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1. Introduction

Curiosity serves as an intrinsic driving force behind the ad-
vancement of human society. We continuously explore the ex-
ternal world and the micro-depths of our bodies. Just as infants
instinctively seek out brightness, humanity relies on light as its
most vital sensing tool. The benefits of using light include the
ability to observe stars from hundreds of millions of light-years
away with a telescope or nanoscaled viruses with microscopy.
Light carries considerable information about the physical world;
it naturally has multiple physical dimensions of intensity, spec-
trum, polarization, time, phase, and others. Optical imaging’s
ability to capture and process information using light pro-
vides numerous advantages across various fields. Its high res-
olution enables the detection of minute details with precision.
Optical imaging also provides real-time imaging capabilities,
enabling dynamic observations and analyses. Its non-invasive
nature makes it suitable for studying living organisms and del-
icate materials without causing damage. Optical imaging tech-
niques are powerful tools for various applications, including
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photography, entertainment, academic research, industry pro-
duction, and healthcare.

Optical imaging can be traced back to the Spring and
Autumn Period in ancient China. Mozi (468-376 BC) recorded
phenomena such as the straight-line propagation of light, the
formation of shadows, and pinhole imaging in Mo Jing.
Progress in optics was gradual until the late 15th and early
16th centuries when the establishment of reflection and refrac-
tion laws led to the development of precise optical components
such as lenses and mirrors, giving rise to telescopes and micro-
scopes and advancing astronomy, navigation, and biology. The
studies of J. Kepler, W. Snell, R. Descartes, and P. de Fermat in
the mid-17th century laid the groundwork for geometric optics.
As the foundational framework for optical design, it has been
continuously used to this day, evident in various imaging devi-
ces such as smartphone cameras, satellite remote sensing, and
astronomical telescopes'!. However, geometric optics-based im-
aging ability has also been limited by these principles. Typically,
to improve imaging resolution, one must increase the aperture of
the optical system; however, the aperture cannot be infinitely
expanded. Additionally, only an intensity two-dimensional
(2D) picture of the scene within the depth of field (DOF) can
be obtained; the original depth information is lost. Advances
in information theory, computer science, and optical modulation

2024 * Vol. 1(1)


https://doi.org/10.3788/AI.2024.20003
mailto:xpshao@opt.ac.cn
mailto:feiliu@xidian.edu.cn

Liu et al.: Future-proof imaging: computational imaging

have raised questions about the optimality of current optical im-
aging methods and the need for new imaging models. Computer
science researchers took the first step earlier than optics re-
searchers. In computer vision, various image enhancement, seg-
mentation, and reconstruction algorithms are applied to improve
traditional optical imaging quality for ease of computer process-
ing, analysis, and display. In this process, the imaging results
obtained through “recreation” were far superior to direct optical
imaging results. For example, image detail resolution improved,
objects were reconstructed in three dimensions, and previously
almost invisible details were observed. These three points have
each evolved into forefront technology areas: super-resolution
imaging, 3D imaging, and scattering imaging.

In the 1990s, computational imaging emerged as a trans-
formative paradigm, revolutionizing our approach to capturing,
processing, and interpreting visual information. The burden of
imaging was no longer borne solely by the physical optical sys-
tem. Front-end optics and post-detection signal processing are
jointly designed and optimized according to information trans-
mission rather than energy. Utilizing computational imaging,
one can design a system to obtain optical measurements from
which images can be derived with information content surpass-
ing the physical limits of traditional optics. The transformative
potential of computational imaging reverberates across a myriad
of domains, from biomedical imaging and remote sensing to
augmented reality and autonomous driving. Moreover, compu-
tational imaging holds promise for addressing societal chal-
lenges such as environmental monitoring, disaster response, and
cultural heritage preservation. In this study, we review the rap-
idly developing field of computational imaging (CI). The entire
computational imaging field is sorted and classified according
to a pivotal process. We define computational imaging that de-
lineates a unitive concept from optically closely related disci-
plines such as photography, astronomy, machine vision, and
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image processing. We follow this in Sec. 2 with a brief history
of optical imaging up to now. We outline the essentials of com-
putational imaging from the perspective of light fields in Sec. 3.
We begin with the relationship between light field and imaging,
consider the physical meanings of different light field projec-
tions, and end with a dimensionality augmentation theory of
computational imaging. According to the imaging frameworks,
the existing computational imaging methods are classified as
computational illumination, the medium, the optical system,
the detector, and processing. In each section, we present exam-
ples to illustrate the imaging principle and applications. The ex-
amples we have curated aim to be representative rather than
exhaustive. We conclude by summarizing the advantages and
disadvantages of computational imaging technology and pro-
viding insights into its future development directions.

2. Development of Optical Imaging

The earliest written records of light can be traced back to the
Western Zhou Dynasty (11th century BC to about 770 BC)
when ancient people knew how to use bronze mirrors to focus
light and make fire. Although it was based on the principle of
focusing light, humans at the time did not understand its es-
sence. It was not until the discovery of electromagnetic waves
thousands of years later that the mystery of light was truly
solved. Throughout the history of the development of optical
imaging (Fig. 1), we can divide it into two aspects: One is
the manipulation of light, which mainly describes the use of
lenses to change the direction of light propagation (refraction
domain reflection), polarization state, etc., to achieve imaging
magnification, microscopy, distortion correction, focal length
adjustment, and other functions. These belong to geometric im-
aging. The other is the perception of light. We know that the
amplitude, frequency, phase, and other physical characteristics
of light contain a wealth of information that can only be used if it
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Fig. 1 Development of optical imaging.
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is detected. If this information is recorded, extracted, and inter-
preted, it can significantly expand the function of the human eye
so that the world we observe is no longer limited to the visible
light band. The development of the field of optical imaging is
based on the development of light manipulation and perception.
The manipulation of light renders us no longer trapped under the
influence of aberrations brought on by imaging devices; we can
selectively obtain the required light. The perception of light en-
ables us to record and interpret the physical information of the
light field. These two aspects complement each other and jointly
promote the development of computational imaging, which will
be described in the sections that follow.

2.1. History of light manipulation

In our daily lives, we use glasses to correct nearsightedness or
farsightedness and magnifying glasses to see distant objects.
These applications involve using lenses to manipulate the direc-
tion of light to meet the imaging needs of focusing, magnifica-
tion, and microscopy. The earliest history of the manipulation of
light can be traced back to the Spring and Autumn and the
Warring States Period. The founder of the Mohist school,
Mo Zhai (about 468 BC to about 376 BC), recorded many phe-
nomena and laws related to light, such as the linear propagation
of light, reflection, and refraction, in the book Mo Jing. Among
them, the most famous is the discussion on pinhole imaging,
which uses the idea of light propagating along a straight line
to manipulate light through the pinhole and obtain the image
of an object. This is also the earliest study and discussion on
pinhole imaging.

Burning glass is mentioned in Aristophanes’ play Clouds
(424 BC); crystal lenses were not made until the 11th and
12th centuries. In 1260-1290, Italian scientists made glasses
from crystal stone, rose stone, and topaz, and lenses gradually
became prevalent. As the law of refraction was further explored,
the microscope and telescope were invented by opticians Yas
Jansen and Galileo Galilei in the late 16th and mid-17th centu-
ries, and people began to explore smaller and more distant
worlds. Kepler compiled the existing knowledge on optics in
1611 and published his book Folding Optics. He proposed
the illuminance law with a point light source and proposed that
the square of the distance from the illuminated surface to the
light source is inversely proportional. He also designed several
new telescopes, particularly the Kepler astronomical telescope,
composed of two convex lenses. He also found that, when light
enters the interface at a small angle, the angle of incidence and
the angle of refraction are approximately proportional. The
exact formula for the law of refraction was proposed by
Snell (1591-1626) and Descartes (1596-1650). In 1621,
Snell showed in an unpublished article that the ratio of the
cosecant of the angle of incidence to the cosecant of the angle
of refraction was a constant, whereas Descartes gave the now-
familiar law of refraction in terms of a sine function in his
Optometry (1637). Then Fermat (1601-1665) in 1657 first
pointed out the principle of taking the extreme value of the dis-
tance traveled by the light propagating in the medium. The re-
flection and refraction laws of light were introduced using this
principle. In summary, by the middle of the 17th century, the
foundation of optics as we know it was laid.

The British scientist Isaac Newton proposed the theory of
dispersion at the end of the 17th century, revealing the phe-
nomenon that light will disperse when passing through a prism.
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The concept of the spectrum gradually became known, and
people entered the color world of multispectrum from the
black-and-white world of light and shadow. Although the law
of refraction and reflection was used to achieve a higher level
of manipulation and use of light, it was still limited to changing
the direction of light. In the early 19th century, French physicist
Agustin Jean Fresnel published his theory on the waves of light.
His theory explained the interference and diffraction phenomena
of light, and scientists began to focus on the nature and motion
of light. Faraday gave a preliminary definition of the light field
in 1846. With the concept of the light field proposed, the re-
search perspective of optics moved from one-dimensional
(1D) and 2D to multiple dimensions; the study of optics stepped
into systematization and standardization. In 2016, based on the
concept of the metasurface, Professor Federico Capasso’s™
team invented the first hyperlens, which can flexibly and accu-
rately regulate the phase, polarization, and amplitude of light,
rendering light field regulation possible.

2.2. History of light perception

Although the current technology can control the multidimen-
sional physical quantities of light, without the perception of this
information, manipulating light is futile for imaging. The per-
ception of light began with the ability to record the intensity of
light wave information, with the concept of imaging through a
small hole first entering people’s vision. After many centuries of
development, pinhole images were detected and applied; how-
ever, the images could only be observed and not recorded, such
as in the 15th to 16th century Renaissance period for painting
“imaging camera boxes.” It was not until the 16th and 17th
centuries when scientists gradually discovered light-sensitive
materials capable of responding to different wave bands that
they could record the intensity of light. By improving the cam-
era obscura model, in 1816, the Niepse brothers began an ex-
periment in recording images with sensitive materials in France,
and the world’s first recognized photograph was taken. In 1886,
Eastman developed roll-sensitive film, and the dream of photog-
raphy technology “facing the masses” finally became a reality.
After the world’s first photosensitive color film that could use
the two-color printing process came out in 1933, the camera
entered the color era, and a variety of cameras and equipment
emerged in an endless stream. Although the film made photog-
raphy accessible to thousands of homes, it was limited by its
sensitive material and form and could not be used to process
images. However, the discovery of the photoelectric effect gave
rise to photoelectric perception technology. With the develop-
ment of computers, the perception of light entered the digital
and information age.

The photoelectric effect was first discovered in 1887 by the
German physicist Heinrich Rudolf Hertz in an experiment to
prove the wave theory of light; the phenomenon was not ex-
plained until 1905 by Einstein’s hypothesis of relativity and
photons, which successfully built a bridge between light and
electricity. Application of the photoelectric effect theory led to
the invention of the charge-coupled device (CCD)"*. In 1969,
scientists Willard Boyle and George Smith at Bell LABS crea-
tively combined the video phone with semiconductor bubble
memory technology to invent a device that could transfer elec-
trical charges along the surface of a semiconductor. It was called
the charge bubble device (CBD). The device collected the
charge generated by the photoelectric effect and recorded the
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image signal; it eventually led to the invention of the CCD. After
the advent of the CCD, people realized its significant
application value in the imaging field, and the first commercial
CCD was released by Fairchild Imaging in 1973 with a resolu-
tion of 100 pixel x 100 pixel. In 1975, Kodak released the first
complete CCD camera. In 1978, Bayer ef al., by adding a color
filter array in front of the CCD, rendered the “color blind” CCD
color aware, making it the first CCD digital camera single-chip
sensor to record color images. CCDs can convert optical images
into digital signals, marking the transformation of optical imag-
ing from image recording to image processing. Simultaneously,
with the rapid development of computer technology, people
began to use computers to store and process digital images.
Common methods include image inversion, image enhance-
ment, image segmentation, and other mathematical transforma-
tions. However, these methods only process the intensity
information of the image and do not consider the phase, spec-
trum, polarization, or other information of the light wave.
Although these methods can improve the visual effect and en-
hance the boundary details, they only analyze the image from a
mathematical point of view and completely ignore the physical
process of light propagation. Therefore, achieving 3D imaging,
nonvisual imaging, image defogging, and other technologies is
challenging.

In the 1960s, scientists measured the X-ray radiation emitted
by celestial bodies. X-rays do not bend through glass, resulting
in imaging lenses not being able to observe X-rays. Therefore,
researchers introduced coding aperture, and the computational
imaging revolution began. In 2003, Mait et al."”' first used the
term ‘“computational imaging.”

With the rapid development of a new generation of technol-
ogies such as multifunctional sensors and increasing informa-
tion computing power, a new type of computational imaging
technology emerged, integrating optics, mathematics, and signal
processing, defying the separate characterization of the im-
aging process by traditional photoelectric imaging technology.
Considering illumination, light transmission through mediums,
optical systems, imaging detectors, imaging circuits, and dis-
plays, optical imaging is described systematically from a global
perspective.

3. Essence of Computational Imaging

The light field, which captures the intensity of light and its
direction, is the core of computational imaging; it enables novel
functionalities such as refocusing and depth estimation. This
section delves into the theoretical foundations of computational
imaging, discussing key principles such as multi-view imaging,
compressive sensing, and inverse problem formulation. By
elucidating the mathematical underpinnings and physical prin-
ciples, researchers gain a deeper understanding of the capabil-
ities and limitations of computational imaging systems.

3.1. Relationship between a light field and computation
imaging

Under ideal conditions, the target light field can be regarded as
lossless during transmission. However, owing to the limitations
of the lens and detector, part of the original light field will be lost
when passing through the imaging system, and only the infor-
mation left behind will be regarded as the imaging result. The
more information passing through the imaging system, the bet-
ter the imaging effect is. The information flux of an imaging
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system can be measured by the spatial bandwidth product
(SBP), which is the number of pixels that can be resolved in
the system’s field of view (FOV). The SBP is mainly limited
by two factors: one is the pixel size and number of detectors,
and the other is the imaging FOV. The larger the SBP, the richer
the information that the system can transmit.

In a traditional imaging system, people usually improve the
imaging FOV to improve the SBP, which is mainly to expand
the performance of the imaging lens. For example, simple op-
tical systems rely on increasing the diameter of the lens or mak-
ing the lens into a curved surface to achieve a large FOV, but
owing to complex objective design and difficult manufacturing
processes, the diameter of the lens cannot be indefinitely in-
creased. Thus, the FOV can be expanded by utilizing multiple
imaging lenses, such as microlens arrays, multi-detector splic-
ing, bionic compound eye imaging, and multi-scale imaging.

Computational optical imaging is a process of recovering im-
age details and other information according to detected light
field information, focusing on improving the SBP by improving
the resolution of the system. These applications include super-
resolution, synthetic aperture, lensless holographic microscopy,
and Fourier lamination imaging. Lensless imaging technology
successfully decouples the resolution and the FOV, enabling the
system to obtain the same SBP with less hardware and more
computational assistance. During imaging, different light field
information can be retained in different application scenarios
and imaging requirements, a select several required physical
quantities can be selected, the maximum optimal principle
can be obtained according to the amount of information, each
dimension projection can be made orthogonal to each other, and
then the required information can be reversed. The maximum
information flux of the whole imaging system, that is, the SBP,
is limited. Therefore, by discussing the computational imaging
paradigm, we can selectively abandon unnecessary information
and broaden the information limit to the extent possible under
the physical limit.

Here we define ‘“computational imaging” as an image-
forming technique that uses various forms of optical modulation
techniques and a significant number of algorithms to capture
and process light field information. It differs from current digital
image processing or machine vision by globally optimizing
front-end (optics) and back-end (electronics) processing to ex-
pand the amount of interesting information transmission.

3.2. Light field projection

The light field is the carrier of information transmission, which is
the beginning of multidimensional information coordination and
nonlinear ideas. It can be divided into geometric and physical
light fields. From the perspective of physics, the light field can
be expressed in terms of particle properties and the wave of light
at the same time. Therefore, the light field information described
from the physical perspective is more comprehensive; computa-
tional imaging interprets the complete light field information
using the physical light field projection information. Thus, the
projection of all types of “full” light field information in the
physical, spatial, and time dimensions can realize polarization
imaging, three-dimensional (3D) imaging, spectral imaging, and
others. The physical properties of light, such as intensity, phase,
spectrum, and polarization in the light field, and the geometric
properties, such as propagation direction and space coordinates
(x, v, z), constitute the “full” light field information.
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intensity

Fig. 2 Light field projection.

Optical imaging is the projection result of the original light
field in different space—time dimensions (Fig. 2). For example,
the image is the projection of intensity (color) information on
the plane, which was originally established based on human
vision, expressing the light flux in each direction of the light
source and representing the size of the passing light energy.
Video is the projection of intensity (color) information in the
time dimension and plane, representing the shape of the light
field at different times. The information in the time domain
can be used to obtain the unique time-varying characteristics
of the light site and is more conducive to further analysis of
the light field. Polarization imaging is the projection of intensity
(color), polarization degree, and polarization angle on the plane,
and the polarization projection expresses the phenomenon that
the vibration vector of the transverse wave of the light wave

Multidimensional light field

Computational
optical system

(perpendicular to the propagation direction of the wave) is
biased in certain directions, indicating that light is also an
electromagnetic wave. The change of the polarization state
can deduce the change in material, environment, and other
parameters. Phase projection makes further use of the electro-
magnetic wave properties of light and expresses the position of
light waves at a specific moment. Phase projection means that
when the phase takes a certain value, it determines that the sys-
tem is in a certain state. The spectrum is a monochromatic light
that can be dispersed into a variety of wavelengths. The red,
green, and blue (RGB) space is the first quadrant of the 3D
space formed by the nonlinear transformation of the spectral
space. The spectral response of different materials to different
bands is not the same, such as the intensity of the three primary
colors that the human eye can feel, which can be understood as
the energy spectrum of light. The light field camera makes an
intensity (color) projection on the 3D space. The first study of
light is the spatial dimension of light, that is, the geometric prop-
erties of light. The spatial information of light represents the
most basic direction of light propagation. Research on light spa-
tial information and the invention of lenses, super lenses, and
other optical devices has laid the foundation for the develop-
ment of optical technology.

4. Advancements in Computational Imaging

The physical process of a traditional photoelectric imaging
model is linear; the imaging and reconstruction processes are
discrete, which produce approximate errors and cannot accu-
rately reflect the complex and changeable imaging process.
Image processing is based on real number transformation, and
there is the loss of information dimension, which cannot re-
present the physical information of multiple dimensions in
the real imaging process.

To solve the above problems, a new imaging model is estab-
lished in computational imaging, which unifies the physical
imaging process and image processing and maps the multidi-
mensional regulation of the light field to every link in the

Fig. 3 Relationship between light field and imaging link.
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imaging link according to the propagation law of information in
the light field. For example, the whole light field is compared to
a color palette (Fig. 3). Different colors on the palette corre-
spond to different dimensional information (intensity, phase,
and spectrum) of the light field. Owing to the limited pigments,
we must select different colors to adjust the required colors
when painting. In the imaging link, we regulate different optical
field dimensions according to the imaging requirements, com-
prehensively consider the association information between the
multidimensional optical field and the light source, medium, op-
tical system design, detector, calculation, and other imaging
links, and finally achieve an accurate description of the real
physical scene.

Therefore, by the establishment of a new imaging model and
the development of a new detector for the overall physical and
information domain, full link optimization and computational
imaging technology describe the light source, propagation path,
optical system, and processing circuit from a global perspective,
breaking the traditional discrete characterization method of pho-
toelectric imaging technology. From the single calculation and
independent optimization of traditional imaging links to the full-
link imaging design optimization, the limitations of traditional
photoelectric imaging can be resolved through multiple chan-
nels. The following sections detail the specific techniques used
for computational imaging in each link.
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4.1. Computational light source

Mlumination is an indispensable part of the imaging link, which
directly or indirectly affects the imaging quality. In the simplest
case, a dark environment significantly reduces the sensitivity of
human photoreceptor cells, and the surrounding environment
can only be recognized clearly by increasing the amount of
light. In this case, illumination improves the signal-to-noise
ratio (SNR) of the imaging system. Therefore, through proper
modulation of the light source, the specific performance indica-
tors of the imaging system can be improved or overcome. A so-
called computational light source encodes the space, time, and
physical dimensions at the side of the imaging system near the
light source. As the number of encoded dimensions increases,
the number of degrees of freedom that can be used to modulate
the light field increases, which is a key feature of computational
imaging, i.e., the dimensionality of the light field can be in-
creased to solve problems that cannot be solved with low dimen-
sionality. Among the physical dimensions, intensity is the
basis for all modulation methods, and all modulation methods
will eventually affect the intensity at the detector surface.
Common modulation methods based on intensity include phase
modulation, wavelength modulation, light vector modulation,
time modulation, and coherent imaging (Fig. 4).
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4.1.1. Phase modulation

Phase is a high-dimensional physical quantity that encodes a lot
of high-dimensional information, such as position and resolu-
tion information. By modulating the phase of the light source,
high-dimensional information can be encoded and projected
onto lower dimensions, thereby improving the imaging perfor-
mance. Structured illumination 3D imaging and structured
illumination microscopy (SIM) are common phase-modulated
imaging techniques. The phase function determines the wave-
front structure of the beam; for example, plane and spherical
waves are named after the wavefront structure of the beam;
therefore, so-called structured light can also be obtained by
modulating the phase of the light source. Structured illumination
3D imaging can be used to obtain 3D information about a target
by interpreting an encoded structured light pattern modulated
by the target. According to the different scenes, the coding
of structured light can be divided into speckle coding'®”), binary
coding™, and phase coding. Phase-coding methods benefit from
good adaptability, high data density, and high imaging accuracy;
hence, they are widely used. Here we only introduce structured
illumination 3D imaging based on phase coding. Structured
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- L
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Fringe Image

Patterns
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Phase
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illumination 3D imaging based on phase coding is usually real-
ized by projecting fringe, so the method is also called fringe
projection profilometry. In 1983, Takeda and Mutoh™ proposed
Fourier transform profilometry. They utilized Fourier transform
to solve the deformation phase, and the 3D shape of the object
can be measured by a single shot. In 1984, Srinivasan et al."”
proposed a 3D measurement method based on phase-shift inter-
ference, also known as phase profilometry. This method uses a
series of grating patterns with a determined phase difference as a
light source to illuminate a measured object and obtain the phase
information. It can achieve accurate measurements even with a
rough projected grating and low-density image sensor array.
However, the phase is limited to the range of 0—2x, which
severely limits the measurement range for the height of 3D ob-
jects. Therefore, in 1999, Sansoni et al.!'"" combined the phase-
shift method with Gray code, as shown in Fig. 5(a). Gray code
can improve the height measurement range without affecting
the measurement accuracy of the phase-shift method; hence,
the two methods are complementary. The combined Gray code
and phase-shift method is actually an intensity coding method;
therefore, it is easily affected by factors such as ambient light,

" v°
Mapping u:::
(d3)
Projector
Image

Fig. 5 Coding methods and experimental results of structured illumination 3D-imaging.
(a) Example of the pattern sequence that combines gray code and phase-shift projection!".
(b) Novel phase-coding method for absolute phase retrievall’. (b1) The sinusoidal fringe pattern
and the wrapped phase obtained from it. (b2) Phase-coding fringe and the codewords extracted
from it. (c) Comparison of projection results between the method based on the phase-coding and
the traditional phase-shifted method!"?. (c1)-(c3) Three sinusoidal phase-shifted fringe images.
(c4) Wrapped phase map. (c5)-(c7) Three phase encoded fringe patterns. (c8) Wrapped stair
phase map. (d) The phase-measuring profilometry based on the composite color-coding
method™. (d1) Schematic of the feature points mapping-based principle. (d2) 3D shape of a stair

model. (d3) Experimental result.
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noise, and surface contrast, which can cause errors when judg-
ing the fringe order.

In 2012, Wang et al."” proposed a phase-coding method in
which code words were embedded into phases. In this method, a
set of sinusoidal fringes and stepped phase-coded fringes are
used to illuminate the object to be measured, and the fringe or-
der is determined from the stepped phase, as shown in Fig. 5(b).
The phase unwrapping is shown in Fig. 5(c). Owing to the lim-
ited number of code words, this method can cause problems
when dealing with high-frequency fringes. In the same year,
Zheng et al." proposed a two-step phase-coding method that
removes the limit on the number of code words. By encoding
two sets of phase information, two sets of code words can be
embedded in the lighting fringe, which increases the number
of code words. However, this method requires more fringe pat-
terns. To reduce the number of projected fringe patterns and im-
prove the code word recognition rate, in 2015, Zhou et al.""
proposed a method where sinusoidal and stepped phase-coded
fringes are encoded into red and blue channels, respectively, to
form color fringes. These color fringes can be used to illuminate
objects to measure their 3D morphology. Based on the idea of
multi-channel coding, in 2019, Zhou et al."* embedded sinus-
oidal fringes, phase-coded fringes, and grayscale coding into the
red, green, and blue channels of color lighting, which reduced
the number of projected patterns. A schematic diagram of this
principle and the experimental results are shown in Fig. 5(d).
In 2020, Chen et al."® proposed an S-shaped piecewise phase-
coding method. This method uses Gray code to encode the
piecewise number of the phase code and uses the S-shaped de-
sign to provide constraints for fringe order judgment, which
reduces the error rate and improves the measurement accuracy.
In 2022, Gui et al."” designed an improved dual-frequency
phase-coded fringe projection method to improve the accuracy
when processing a large number of code words, and they real-
ized absolute phase recovery.

In addition, the phase information of the object can be ob-
tained by the phase retrieval method to acquire the 3D structure
of the object. In terms of phase retrieval, in addition to iterative
algorithms such as the Gerchberg—Saxton (GS) algorithm!*'"!
and hybrid input-output (HIO) algorithm™, there are also
non-iterative phase recovery algorithms such as the transport
of intensity equation (TIE). TIE is a second-order elliptic partial
differential equation, which describes the relationship between
the variation of intensity along the optical axis to the phase
of the optical field at the plane perpendicular to the optical axis.
Using the TIE, the phase information of the target can be quan-
titatively recovered from the intensity distribution of different
transmission distances. The TIE was first derived in 1982
by Teague. He derived the TIE from the Helmholtz equation
under the paraxial approximation and obtained the solution of
the equation based on Green’s function in 1983%". In 1995,
Gureyev et al.® proved the solvability and uniqueness of
the TIE under different boundary conditions. Subsequently,
the Zernike polynomial method®”, multi-grid method™, fast
Fourier transform method!"”, and other numerical solution meth-
ods have been proposed. The method based on fast Fourier
transform is the most widely used method to solve the TIE.
The fast Fourier transform method was proposed by Gureyev
et al. in 1996, which implicitly includes periodic boundary
conditions and can solve the TIE quickly and effectively. On
the basis of the Fourier transform method, there are also many
improvements. For example, Paganin et al.”® extended the
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Fourier transform method to the case of the non-uniform light
field, and in 2014, Zuo et al.””’ proposed a method based on
discrete cosine transform (DCT) to solve the TIE, which real-
ized the fast solution under non-homogeneous boundary condi-
tions. The establishment of a mathematical theoretical basis and
numerical solution of the TIE has promoted its application in
many fields such as adaptive optics (AO)®, optical phase
microscopy™, and X-ray diffraction imaging™.

Structured illumination imaging based on phase modulation
can also be used for super-resolution imaging. From the per-
spective of Fourier optics, the imaging resolution is limited by
the bandwidth of the system; therefore, the resolution can be
improved by expanding the optical transfer function. Based
on the Moiré effect, the structured illumination microscope
loads high-frequency information about an object into the de-
tection passband of the optical system by mixing the frequency
in the frequency domain with the structured illumination. This
method indirectly extends the bandwidth and facilitates super-
resolution optical microscopic imaging that exceeds the diffrac-
tion limit. In 2000, Gustafsson et al.®" proposed a classical
super-resolution microscopic imaging technique with a two-
beam interferometric fringe as the light source. This method
can achieve a lateral resolution that is greater than half the
classical diffraction limit; however, it only improves the lateral
resolution. In 2008, Gustafsson et al.”? used three-beam inter-
ferometric structured light as the light source to achieve 3D
imaging, which improves both the lateral and longitudinal res-
olution and deterministically eliminates defocusing blur.

Illumination is an important part of SIM, and since its incep-
tion, researchers have made various improvements to the light-
ing mode to improve the imaging performance. For example, in
contrast to traditional two- or three-beam interference lighting
methods, in 2008, Shao et al.”® proposed SIM based on six-
beam interference, where the original three beams are trans-
formed into six beams through two opposite objectives. This
method can be used to achieve high-resolution 3D imaging.
However, it is complicated, and the optical path is difficult to
construct experimentally. Therefore, in 2020, Manton et al.®¥,
considering the feasibility of the system structure, used a mirror
to reflect the central beam back to the interference region to
achieve four-beam non-interference microscopic imaging, as
shown in Fig. 6(a). This method improves the axial resolution,
as shown in Fig. 6(b). In 2021, Xu et al.” proposed an asym-
metric three-beam interference method based on the traditional
three-beam interference method. They increased the 3D imaging
speed by optimizing the modulation method and acquisition
timing. In 2023, Li et al.® proposed a simple method for gen-
erating four-beam interference and combined it with deep learn-
ing methods to achieve an isotropic resolution of 120 nm. In
addition, to reduce the system complexity caused by interfer-
ence, many lattice-based lighting methods have been proposed.

In 2010, Miiller and Enderlein®”! proposed image-scanning
microscopy that uses a single laser focus to scan the sample.
To improve the imaging speed of single-point scanning, in
2012, York et al."™® proposed multifocal structured illumination
microscopy (MSIM), which uses digital micromirror devices
(DMDs) to generate a multifocal exciting light for scanning.
In 2013, York et al.” also suggested that MSIM could be im-
proved by adding a pinhole lattice corresponding to the illumi-
nated light lattice behind the micromirror array and using the
galvanoscope to cast the exciting light onto the sample to be
measured, as shown in Fig. 6(c). This method further increased
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Fig. 6 Common SIM scheme and experimental results. (a) Schematic of the four-beam experi-
mental setup®. (b) Simulated imaging performance on a fibrous ground truth testimage, shown as
an x-z slice®.. (b1) Ground truth. (b2) Three-beam SIM. (b3) I5S (dual-objective six-beam SIM +
interferometric detection). (b4) Dual-objective four-beam SIM (without interferometric detection).
(c) Key steps in implementing instant structured illumination®. (c1) A converging microlens array
is used to produce a multifocal excitation. (c2) Out-of-focus fluorescence is rejected with a pinhole
array that is matched to the microlens array. (c3) A twofold local contraction of each pinhole fluo-
rescence emission is achieved with the aid of a second, matched microlens array. (c4) A galvo
serves to raster multifocal excitation and sum multifocal emission, producing a super-resolution
image during each camera exposure. (d) Comparison between traditional SIM and cSIM“.,
(d1) Conventional SIM relies on a high-NA objective lens for both excitation and collection.
(d2) cSIM harnesses interference in a waveguide to excite the specimen via evanescent fields,

decoupling the excitation and collection light paths.

the imaging speed of the SIM system and gave it the ability to
image living cells in real time. Following the development of
photonic integrated circuits (PICs), in 2022, Helle et al.""! pro-
posed 2D SIM based on photonic chips (cSIM). The approach
using a planar photonic chip, which acts as both the bearer and
light source to replace the traditional glass sample slide, is illus-
trated in Fig. 6(d). The optical waveguide array on the chip
generates interference patterns at different angles, and the evan-
escent field is used to illuminate the sample. This method
greatly improves the illumination alignment and reduces the
complexity of the imaging system.

4.1.2. Wavelength modulation

Wavelength modulation usually refers to the modulation of the
wavelength 1 or wave band AA. For example, specific wave-
lengths are used for fluorescence microscopic imaging, and
wide-spectrum light sources are used to prevent speckle
noise in holograms. From the perspective of the diffraction lim-
its, the wavelength partially determines the resolution of the im-
aging system; therefore, the resolution can be improved by

Advanced Imaging

012001-9

appropriately modulating the wavelength of the light source.
From the perspective of the spectrum, different wavelengths
can encode different information, and there is a correlation be-
tween them. Reasonable use of the correlation between spectral
information at different wavelengths can also improve the per-
formance of the imaging system. Common computational im-
aging methods based on wavelength modulation include
stimulated emission depletion (STED) microscopy, STORM,
and dual-wavelength holographic scattering imaging.

STED controls the excitation and depletion of fluorescent
molecules by adjusting the wavelength of the light source, re-
duces the spot size corresponding to the point light source on the
image plane, and realizes the modulation of the optical system
point spread function (PSF); hence, it overcomes the diffraction
limit. STED microscopy was first proposed in 1994 by Hell and
Wichmann™., The STED system requires two illuminating
beams with different wavelengths, which are used as excitation
and depletion lights. When the excitation light irradiates the
sample, all the fluorescent molecules within the Airy disk are
excited, and the depletion light is superimposed on the periphery
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of the spot. The excited fluorescence molecules in the periphery
of the solid spot can be quenched to obtain a solid spot with
higher resolution, thereby regulating the PSF of the system.
The selection of suitable wavelengths for the excitation and
depletion lights is necessary for optimizing the performance
of STED systems. The wavelength of the excitation light should
be near the peak wavelength of the fluorescence excitation spec-
trum to ensure that its energy is fully absorbed. The wavelength
of the depletion light should be close to the tail of the long wave
side of the fluorescence emission spectrum. However, this
method of selecting the wavelength can reduce the stimulated
emission cross-section at the wavelength of the depletion light.
Consequently, the corresponding threshold light intensity is in-
creased, which increases the required depletion light intensity
and can cause severe bleaching of the sample.

If the wavelength of the depletion light is close to the emis-
sion spectrum, then the stimulated emission cross-section will
increase; however, the depletion light will cause a secondary
excitation of the sample, which will interfere with the experi-
mental results. Therefore, the interference caused by secondary
excitation must be prevented. In 2012, Vicidomini et al.** con-
sidered the depletion light intensity as undesirable background
light. They obtained the final light intensity by considering the
difference between the images with conventional STED and
with the depletion light, which improved the imaging efficiency
and the contrast of the image. The effectiveness of this method
has been verified experimentally; however, the technology is not
mature enough for practical applications. In 2017, Gao et al.'*"
proposed stimulated emission double depletion (STEDD)
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imaging technology, as shown in Fig. 7(a). Two pulses were
used to perform traditional STED and center intensity quench-
ing, as shown in Fig. 7(b). The traditional STED and back-
ground intensity images were obtained, and the result was
obtained by subtracting the images. This method reduces the
effect that the wavelength has on the optical power and improves
the imaging resolution, as shown in Fig. 7(c).

STED essentially regulates the PSF of the system by modu-
lating the wavelength of the light source, thereby reducing the
size of the Airy spot to achieve super-resolution imaging.
Wavelength modulation also allows imaging to be separated
over time, thereby reducing the aliasing of the Airy spots.
Using light of different wavelengths, STORM controls the
brightness of random single fluorescent molecules in the sample
and then locates the activated fluorescent molecules precisely.
After several cycles, all the information is superimposed to
reconstruct the information for the entire sample.

STORM was first proposed in 2006 by Rust et al.™*¥, and it
can be used to image biological structures with resolution below
the diffraction limit. To further study the molecular structure and
the interactions between biological macromolecules, STORM is
being developed to incorporate multicolor imaging. In 2007,
Bates et al.™ proposed a series of probe pairs with different
absorption spectra and emission spectra, which form a reporter
and activator. These probe pairs can be used as fluorescent
switches. Different wave bands of pulsed light are used to acti-
vate the activator to realize multicolor STORM. The advantage
of this method is that the imaging resolution of each channel
is high; however, the non-specific activation of the laser

Confocal

Fig. 7 Scheme of STEDD microscopy™*®. (a) Sketch of the STEDD, including the sequence of
excitation and depletion pulses. (b) Detailed temporal sequence of fluorescence excitation.
Shortly after the excitation pulse, the first STED1 pulse (intensity profile visualized in the x—z
plane) depletes the majority of excited fluorophores except for those near the center. A fraction
of fluorophores in peripheral regions of the observation volume still escape depletion or are re-
excited by the STED beam. The second weaker STED2 pulse (intensity profile also visualized in
the x—z plane) depletes excited fluorophores near the center but leaves those in the periphery
unaffected. (c) Combined confocal and STEDD image of a COS-7 cell expressing the
mGarnet-RITA fusion protein as a microtubule marker.
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luminescence causes crosstalk between the different colors. In
2015, Zhang et al."** added a prism to one of the optical paths of
the dual-objective imaging system to obtain lateral spectral ex-
pansion fluorescence signals, and they performed conventional
STORM on the other path. Thus, they obtained a super-resolu-
tion image that contained both spatial and spectral information.
This method only requires one beam of excitation light to
achieve multicolor imaging, and the resolution is high; however,
the data processing is more complex.

In 2016, Shechtman et al.*” used a spectrally dependent
phase plate, based on PSF engineering technology, to directly
encode spectral information and change the shape of different
color PSFs, as shown in Fig. 8(a). Thus, they achieved efficient
two-color imaging, as shown in Figs. 8(b) and 8(c). In terms of
3D imaging, the most commonly used techniques are astigma-
tism, biplanar imaging, and double helix structures. In 2008,
Huang et al.*® used optical astigmatism to obtain PSFs for
multiple planes near the focal plane, and they determined the
axial and lateral positions of single fluorophores according to
the deformation of the PSF. Through the iterative and random
activation of the optical switch, high-precision 3D positioning
of each probe can be achieved, which facilitates the construction
of 3D images without scanning the samples. In the same year,
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the team of Huang™” combined 3D STORM with multicolor
STORM and conducted multi-structure imaging of whole cells.
Thus, they successfully imaged the mitochondrial network,
which is beneficial when studying the spatial relationship be-
tween mitochondria and surrounding microtubules.

The biplane method proposed by Juette et al.”™ in 2008 and
the double helix PSF method proposed by Pavani et al.®'" in
2009 both achieved 3D imaging. Compared with the astigma-
tism and biplane methods, the double helix method has higher
positioning accuracy and a greater DOF. In 2012, Xu et al.™
used the dual objective lens method to achieve STORM with
super-resolution imaging. The number of fluorescence photons
collected during the imaging process doubled, and the resolu-
tion was increased to 1.4 times that of a single objective lens.
In traditional 3D single-molecule imaging, the aberrations of
fluorescent molecules far from the central optical axis are diffi-
cult to correct, which limits the FOV. In 2020, Fu et al.®¥ used
advances in deep learning and proposed the FD-DeepLoc net-
work, which can accurately locate dense emission units within a
large FOV. Its inference process is shown in Fig. 8(d). This
method has spatial awareness and can achieve high-throughput
3D super-resolution imaging of whole cells with a large FOV
and DOF. Compared to traditional astigmatism-based 3D
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Fig. 8 PSF-based multicolor STORM and deep learning-based STORM. (a)-(c) Multicolor
STORM", (a) Raw data from the recorded super-resolution imaging movie. Insets: two enlarged
example PSFs of a green label (horizontally elongated, top) and a red label (vertically elongated,
bottom) with arrows indicating the elongation direction. (b) Super-resolution image obtained by
localizing each emitter in the movie and assigning its color (red, microtubules; green, mitochon-
dria). Inset: diffraction-limited data. (c) Histogram of all of the localizations within the dotted white
box surrounding an ~2 pm-long microtubule section in (b) (dark gray, FWHM = 53 nm) and the
diffraction-limited intensity cross-section from the same region (light gray, FWHM = 329 nm).

(d) FD-DeepLoc inference process®™.
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imaging, FD-DeepLoc has a greater DOF and FOV, which in-
creases the throughput by approximately 100 times and enables
high-precision, high-fidelity imaging of biological structures
across the entire camera frame (~180 x 180 x 5%).

Another computational imaging method based on wave-
length modulation is scattering imaging, which utilizes dual-
wavelength holography. In contrast to traditional holography,
dual-wavelength holography uses two different wavelengths
to record digital holograms, obtains their wrapped phase maps
via numerical computation, and obtains the equivalent wave-
length phase diagram by determining the difference to realize
phase unwrapping. Dual-wavelength holography avoids the
problems of time-consuming calculations and poor stability
faced by the traditional phase unwrapping algorithm. In 2000,
Wagner et al.”™ realized the combination of dual-wavelength
interference technology and digital holography for the first
time, which did not require complex phase unwrapping and
could accurately measure the topography of millimeter-scale
objects.

The combination of dual-wavelength holography and spec-
tral correlation of the scattering medium can also be used to
realize imaging through the scattering medium and non-line-
of-sight (NLOS) imaging. In 2006, Hayasaki et al.” introduced
dual-wavelength holography for imaging through the scattering
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media. They used two lights with wavelengths 1, and 4, with a
CCD camera to obtain two holograms with different wave-
lengths and calculated the synthetic hologram and synthetic
wavelength. The synthetic hologram propagates backward
along the optical path at the synthetic wavelength to obtain the
image of the obscured object. This approach greatly promoted
the development of digital holography in the field of scattering
imaging. In 2019, Willomitzer et al.®® used dual-wavelength
holography and the spectral correlation in the scattered light
to restore the holographic image of an obscured object with high
spatial and temporal resolution in a wide-angle FOV. In 2021,
Willomitzer et al.®"" also suggested that a scattering medium
could be irradiated with two beams of light with different wave-
lengths to form scattered light to illuminate the detection target.
Then, the synthesized wavelength hologram is calculated and
propagated backward along the optical path to realize nonvisual
imaging of the object. The schematics and experimental results
are shown in Figs. 9(a) and 9(b), respectively.

4.1.3. Light vector modulation

The light vector of a light source can be modulated by adjusting
the illumination direction of the incident light source. Multi-
angle illumination can be introduced to provide additional con-
straints for the underdetermined problem to ensure that the
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solution is unique or to encode target information into the illu-
mination direction, which can be recovered by decoding. The
main applications of light vector modulation are the ptycho-
graphic iterative engine (PIE) and Fourier ptychographic
microscopy (FPM).

PIE is based on coherent diffraction imaging. By introducing
light vector modulation, constraints are introduced to the under-
determined problem, which can solve problems such as slow
convergence speed, local optimization, and algorithm stagnation
that arise in traditional coherent diffraction imaging. In 2004,
Rodenburg and Faulkner® proposed a lensless PIE based on
an illumination array scanning sample and the corresponding
iterative algorithm. The method scans the object to be measured
by changing the direction of the illumination and records a
series of diffraction spots. Physical mechanisms, such as inter-
ference, are contained in the partially overlapping position re-
lationship. Therefore, the complex phase object can be solved
without any restrictions on the surface of the object to be mea-
sured. This approach has the advantages of a large imaging
FOV, strong algorithm robustness, and high error tolerance.
Moreover, it offers the possibility of lensless transmission
microscopy with subatomic resolution using electrons, X-rays,
or nuclear particles.

The imaging effect of PIE can be improved by modulating
and encoding the light probe. In 2018, Zhou et al.”™ proposed
a lensless imaging scheme with multi-angle light-emitting
diode (LED) lighting where a pinhole was placed between
the LED array and the object, and the diffraction pattern

(b)

was obtained through a single illumination. The optical setup
and corresponding forward model expression are shown in
Figs. 10(a) and 10(b), respectively. Figures 10(c) and 10(d)
show the measurement and recovery results of the method.
The information in the overlapping region is demultiplexed
by an optimization algorithm to reconstruct the image, which
solves the problem of time-consuming measurement processes.
In 2021, Lu et al."" suggested that the pinhole between the LED
array and the object could be replaced by a random optical mask
to avoid dependence on mechanical scanning accuracy and im-
prove the imaging resolution. LED arrays are used to provide
illumination at different angles to project translational structured
patterns without mechanical scanning. The forward imaging
model of the mask-modulated lensless imaging is shown in
Fig. 10(e). The method uses a regularized graph iteration engine
to obtain higher resolution and better quality images and to im-
prove the imaging efficiency, as shown in Fig. 10(f). According
to Nyquist’s sampling theorem, the resolution of a reconstructed
object is limited by the size of the detector pixels. Therefore, in
2024, Lan et al."®" suggested that the original flat illumination
should be replaced by divergent illumination, which can im-
prove the resolution by a factor of 2 using only 30 diffraction
patterns for 10 iterations.

Light field information can also be encoded and interpreted
in the Fourier domain using the concept of ptychographic im-
aging. In 2013, Zheng et al."” proposed FPM imaging, which
integrated the concepts of phase recovery and synthetic aperture.
This method achieved high-resolution imaging with a large
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Fig. 10 Multi-angle illumination lensless imaging and mask-modulated lensless
(a)—(d) Multi-angle illumination lensless imaging®. (a) The optical setup of multi-angle illumination
lensless imaging system. (b) The corresponding forward model expression. (c) The corresponding
single-shot measurement. (d) Recovered results of a USAF-1951 resolution chart. (e)—(f) Mask-
modulated lensless imaging®.. (e) Forward imaging model of the mask-modulated lensless im-
aging. (f) Comparison of the recovered images using the USAF-1951 resolution target.
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FOV using multiple iterations of low-resolution intensity
images from different lighting angles in Fourier space, as shown
in Fig. 11(a). In traditional FPM imaging, the sampling speed is
limited by the number of samples and the relatively long expo-
sure time required to obtain dark field images. To make Fourier
ptychographic imaging suitable for real-time imaging, the illu-
mination mode can be adjusted to reduce the sampling time.
Intuitively, the most direct way to reduce the sampling time
is to reduce the number of samples or shorten the sampling
time for a single sample.

The methods commonly used to reduce sampling times
include adaptive illumination and multi-channel sampling.
Content-based adaptive illumination was proposed in 2014
by Bian et al'®, Fourier ptychographic imaging based on
self-learning was proposed in 2015 by Zhang et al.™, and
Fourier ptychographic imaging based on a predictive search
algorithm was proposed in 2017 by Li et al.'!. All these meth-
ods are based on the idea of adaptive illumination. That is, the
illumination angle is selected according to the spectral energy
distribution in Fourier space, which reduces the sampling speed
and sampling time. However, this approach is only effective for
samples with highly structured Fourier spectra.

In multiplexing, multiple LEDs with different angles or col-
ors are used to illuminate the sample simultaneously. In 2014,

Pattern

Low resolution
raw data from
multiplexed 4 LED
illumination

Fourier space
coverage

Tian et al' proposed a multiplexing illumination strategy
where LEDs are randomly turned on for each captured image.
Each LED corresponds to a different region of Fourier space, as
shown in Fig. 11(b); therefore, the total number of images can
be reduced significantly without affecting the image quality. In
the same year, Dong et al.'"” proposed state-multiplexed Fourier
ptychographic imaging to address the partial coherence effects
of light sources and realize color imaging. In 2018, Sun et al.”™
proposed a single quantitative phase imaging (QPI) method
based on color multiplexing FPM, where the samples are simul-
taneously illuminated with their respective RGB channels in a
programmable LED array, which overcomes the problem of
pixel aliasing, improves the accuracy of phase recovery, and in-
creases the efficiency of image acquisition. The main methods
of shortening the sampling time by reducing the exposure time
involve the use of spherical light sources'®™ and lasers”"" for
illumination. The experimental setup for FPM based on a laser
illumination source is shown in Fig. 11(c).

4.1.4. Time modulation

Time modulation implies the modulation of a light source over
time. The modulation can separate the target from the back-
ground signal in the time domain to improve the SNR of the
image or determine the distance between the target and the

Fig. 11 FPM and corresponding illumination improvement strategies. (a) Iterative recovery
procedure of FPM (five steps)®. (b) Multiplexed coded illumination for FP with an LED array mi-
croscope’®., (Top) Four randomly chosen LEDs are turned on for each measurement. (Middle) The
captured images corresponding to each LED pattern. (Bottom) Fourier coverage of the sample’s
Fourier space for each of the LED patterns (drawn to scale). (c) Experimental setup of FP based on

the laser illumination source!™.
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detector according to the time difference to produce a 3D
reconstruction of the target. Common computational imaging
methods based on time modulation include time of flight (ToF)
and coded exposure technologies.

ToF can be broadly understood as a technique to understand
certain properties of ions or media by measuring the time it takes
an object, particle, or wave to travel a certain distance in a fixed
medium. ToF is mainly realized via pulse modulation, and it has
a broad range of applications. In the imaging field, ToF is
mainly used for laser range-gated and scattering imaging.

Laser range-gated imaging realizes signal separation accord-
ing to the difference between the target and background signal
in the time domain to improve the SNR. Laser range-gated im-
aging has developed rapidly since the 1990s owing to advances
in laser, photodetector, and electronic signal processing technol-
ogies and is used for 3D imaging applications in the field of
national defense. In 2004, Busck er al” from the Danish
Defense Research Department proposed a laser 3D imaging
method based on range-gated time slicing. This method ac-
quired multiple image frames by taking slices at time intervals
within the range of the gated distance and then reconstructed
one frame of the 3D image using the Gray information from
multiple frames. In 2006, Andersson et al.”' used this time-slice
method to conduct laser 3D imaging experiments. Multi-frame
slices were obtained using a 532 nm pulsed light source and
an ICCD camera, which resulted in measurements with an ac-
curacy of 6 m for a target at a distance of 830 m, as shown
in Fig. 12(a).

In 2007, Laurenzis et al.”® proposed a super-resolution
intensity correlation laser 3D imaging method. This method
illuminates a scene hundreds of meters away using microsecond

(@)

(b)

laser pulses and sensor gate widths, and the scene is recorded as
a single image. The trapezoidal distance intensity profile is an-
alyzed to determine the reflectivity and depth of the scene, as
shown in Fig. 12(b). This method only requires two intensity
maps to generate a distance map, has a high imaging speed,
and involves a small amount of data. However, the laser pulse
must be twice the fate pulse width, and the light source must be
linear, which is difficult to achieve in practice. Therefore, in
2008, Zhang et al."” proposed a linear—linear gain pulse modu-
lation model based on the linear—constant gain pulse modulation
model, which ensures the linearity of the light source and
effectively improves the anti-interference ability and ranging
resolution of the system. In 2018, Chen et al.”™ proposed a
polarization-modulated 3D imaging method to achieve remote
3D imaging with high resolution and low-light sensitivity, sim-
plify the data acquisition process, and reduce the acquisition
time. The results are shown in Fig. 12(c). This addresses the
fact that the indirect ToF measurement method based on inten-
sity is unstable when the echo signal is very small. In 2021,
Liu et al.” proposed a polarimetric modulated photon-counting
3D imaging method based on a negative parabolic pulse model
(NPPM). The number of photons received after each laser pulse
is used to measure the weak signal. The calculation method was
established by exploring the relationship between the ToF of the
photons that corresponded to the polarization-modulated state
controlled by the phase shift. The photon rates were calculated
from the received photon counts based on the Poisson negative
log-likelihood function and used to find the distance. When the
average number of echo signals received by each pulse laser is
less than 0.05, this method can still achieve millimeter accuracy,
and it has good 3D imaging performance.
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Fig. 12 3D imaging and scattering imaging based on ToF. (a) Experimental results of range-gated
laser imaging based on the time slice. Terrain vehicle imaged from ranges of 1.9 km (left) and
7.2 km (right). (b) The imaging results of range-gated laser 3D imaging based on intensity corre-
lation at different distances™. (c) 3D structure of the towers derived from the polarization-modu-
lated 3D imaging lidar. (d) Principle and results of imaging through realistic fog with a SPAD
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Imaging through scattering media based on the ToF is essen-
tially a correction problem with multipath interference. In the
scattering environment, multipath interference is the signal re-
ceived by the detector that is an alias of the target signal and the
scattered signal, which creates a bias in the results. By analyzing
the time dimension information and distinguishing the photon
arrival time, ToF technology can enhance the target signal and
suppress the scattered signal to realize imaging through scatter-
ing media. In 1991, Wang et al.® used a pulse-modulated light
source to separate ballistic light and scattered light in the time
domain for the first time. Hence, they realized submillimeter
imaging through a variety of scattering media. The proportion
of ballistic photons can be increased by adjusting the gate,
which improves the contrast. This work verified the validity
of the time-domain separation method and has been an impor-
tant reference for subsequent work.

In 2007, Laurenzis et al.”® used microsecond laser pulses
and sensor gate widths under foggy conditions to suppress
the scattered signal and achieve high-resolution 3D scattering
imaging. However, the imaging contrast was low owing to
the small number of ballistic photons, and this method cannot
be applied to complex scattering scenes. In 2012, Laurenzis
et al.™ used a 3D laser range-gated imaging system to model
the scattering imaging based on ToF, and they analyzed the
effect of the scattering environment on the depth resolution
of the imaging system. The work provided a theoretical basis
for subsequent work and helped suppress the influence of multi-
path interference from the scattering mechanism. To solve the
problem of low imaging contrast caused by traditional gating,
in 2018, Satat et al.®™ used a single-photon avalanche diode
(SPAD) camera to record all the information about photons, in-
cluding the time domain information, pixel by pixel. The dis-
tribution of the scattered and non-scattered light in the time
profile was modeled to distinguish between the background
and signal photons to achieve high-contrast and high-resolution
imaging through scattering media, as shown in Fig. 12(d).

In 2020, Yin et al™ studied ToF imaging for under-
water scenes, used time-gating to suppress backscattering, and
adopted the Bayesian probability model to distinguish reflected

(a) PSF size estimate: 35
(image res: 640*480)

PSF size estimate: 42
(image res:256*256)

pulses from the return signals affected by forward scattering.
Using information about neighboring pixels to reconfigure
the depth information, they were able to recover depth informa-
tion from objects 7-10 m away from the camera in gulf, coastal,
and deep-sea underwater environments. In 2021, Kijima et al."®
further refined the fog imaging model by adding time gating.
In the refined model, the gate is opened immediately after the
light source transmits the signal so that it only accepts the scat-
tered component of the signal. Therefore, the scattering proper-
ties of the fog can be determined, and the intensity and depth
image can be determined for a target in a foggy scene with a
depth of 10 m.

Motion blur is a basic problem in the imaging field.
Essentially, it is the degradation of image quality during image
acquisition caused by the limited frequency band. Coded expo-
sure technology can expand this limited band by controlling the
exposure to save more high-frequency information and recover
a clear image. The most common encoding exposure mode is
time coding, which is the overall exposure mode in the time
order. According to the specific coding, the one original expo-
sure is extended to multiple exposures; hence, more high-
frequency information about the original target image can be
retained. Time-coded exposure was proposed by Agrawal and
Raskar™®' in 2006. This approach quickly controls the opening
and closing of the shutter during the exposure according to a
prefabricated binary sequence, which widens the band and im-
proves the PSF deconvolution performance. This method can be
used to restore a clear image from a fuzzy image. The selection
of an optimal code word is key to achieving successful time-
coded exposure technology. In 2012, McCloskey et al.™ pro-
posed an optimal code word sequence criterion dependent on
the moving speed of the object, which further improved the
coding exposure performance, as shown in Fig. 13(a). However,
the effective PSF was determined by the moving speed of the
object, and it became irreversible when the speed of the object
was too great.

In 2015, He et al.®” introduced coded exposure imaging into
flutter remote sensing image restoration. According to the op-
timal coding sequence selection criterion, the remote sensing

(b1) N (b2)

Fig. 13 Experimental results of different methods of deblurring. (a) Coded exposure that de-
pends on the speed of an object’s motion®®. Column 1: input images. Column 2: matching metric
versus velocity. Column 3: deblurred results using our estimated velocity. (b) Comparison of the
deblurring performance with different sequence lengths under the same exposure®. (b1)
Sequence length =40, 1 chop duration =3 ms. (b2) Sequence length = 120, 1 chop duration =1 ms.
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image is quickly restored. In 2017, Jeon et al.® explored the
effects of binary coding and proposed an optimal time-coding
design scheme for different application conditions. By studying
motion deblurring based on coded exposure, they found that the
binary coding in coded exposure should conform to the law of
random sequence code words. A comparison of the deblurring
performance with different sequence lengths under the same
exposure is shown in Fig. 13(b). Jeon et al. also proposed two
algorithms that could be used to generate short and long binary
sequences. Different code lengths were selected according to the
external conditions to improve the recovery effect. In the same
year, Jeon et al.™ also used the low cross-correlation between
multiple sets of codes to form complementary code sets, which
protected the information collection process.

4.1.5. Coherent imaging

Coherent imaging refers to imaging under coherent light. In
contrast to incoherent imaging, coherent imaging can be used
to determine the phase information of a target; therefore, it
has been used in the fields of microscopic imaging, 3D im-
aging, and optical defect detection. Common coherent imaging
methods include optical coherence tomography (OCT) and
holography.

OCT is a new 3D tomography technology. Based on the prin-
ciple of low-coherence light interference, OCT uses a spectro-
scope to divide the low-coherence light source into reference
and sample beams. The scattered light from the sample beam
loses its coherence with the reference light; thus, only the target
light information is retained in the interference pattern. The
small coherence length of the light source ensures that the sep-
aration between the target and scattered light is precise. In 1991,

(a) Reference (b)

Mirror

z, 2z, z,
Light
Source e
Beam AV Bumlthr)

e
v'[ X Splitter *v,
%i;;' s | 1
E" 7;\\‘\‘{7»*\1‘1“,-,\7 ,.‘!@‘,‘,,,,

Photodiode | 2
Bandpass Filter

8| A-scan
Demodulator | g /\ A
S

Zu

Light source

Huang et al™ used the optical time-domain interference
method to achieve 2D sectional imaging of the retina and coro-
nary artery in vitro for the first time. Time-domain OCT
(TDOCT), shown in Fig. 14(a), is considered to be the first gen-
eration of OCT technology. However, the imaging speed of
TDOCT is limited by the scanning speed of the reference
arm, which means that it cannot be used for real-time imaging.
In 1995, Fercher et al.®" proposed the concept of frequency-
domain OCT (FDOCT), which uses spectral-domain OCT
(SDOCT) measurements instead of single-point measurements
in the time domain. Hence, FDOCT can obtain all the depth
information from a single measurement of the spectra of the
interference signals and Fourier transforms. In contrast to
TDOCR, SDOCT does not require a scanning reference arm,
which greatly improves the measurement speed and makes
real-time OCT imaging possible. In 1997, based on FDOCT,
Chinn et al.”” proposed that the spectral information could be
mapped to the time using a wide-range swept laser as the source.
Thus, they further improved the speed of OCT using the fast
response rate of single-point detection in the time domain.
This type of OCT is called swept-source OCT (SSOCT).

The lateral resolution and axial resolution of OCT systems
are independent. The lateral resolution is determined by the
focusing conditions of the beam used to illuminate the sample,
whereas the axial resolution is determined by the central wave-
length of the light source and the half-peak full width of the
spectrum. Therefore, OCT can achieve imaging with both high
lateral and axial resolutions.

Considering the axial resolution, as high-power light sources
such as mode-locked lasers have been developed, many meth-
ods of using them to generate supercontinuum spectra to

lllumination x

L beam

i Collection

beam
Metasurfaces

Fig. 14 TDOCT structures and metasurface-based bijective illumination collection imaging (BICI).
(a) Simplified block diagram of the TDOCT method®. (b) Incorporation of BICI through one arm
of an interferometer (orange lines represent a single-mode fiber)"2. (c) Tissue imaging compari-
son of BICI and a conventional approach®?, Imaging swine tracheobronchial tissue specimens
using a plano-convex lens with common illumination and collection paths (c1, c2, ¢5, and c6) and
BICI (c3, c4, c7, and c8). (c9) Corresponding histology image of the tissue imaged using the
conventional approach.
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improve the axial resolution have been proposed. In 2002,
Povazay et al.” suggested that a supercontinuum spectrum
light source could be generated using a femtosecond titanium
gem laser, and they realized an OCT imaging system with an
axial resolution of 0.75 pm. This indicates that the measurement
accuracy of OCT has reached the subcellular level. In addition
to the use of ultra-wide spectral light sources, SLD light sources
with different center wavelengths and bandwidths can also be
combined to obtain a wider spectral range. This idea was
adopted by Liu et al. in 2011™, who proposed pOCT, and by
Gui et al. in 2014", who used two infrared diode light sources
to obtain wide-spectrum infrared lighting. The axial resolution
of the OCT system is directly proportional to the central wave-
length of the light source. Therefore, in 2017, Fuchs et al.®™™
used an extreme ultraviolet light source to achieve nanoscale
axial resolution. However, owing to the substantial loss of ultra-
violet light in biological tissues, this approach is not suitable for
biological observations, and ultraviolet OCT is mainly used to
measure semiconductor materials. In 2019, Israelsen et al.””
used a high-brightness mid-infrared supercontinuum light
source to achieve micron-scale axial resolution OCT in the
mid-infrared band, which can be used for real-time nondestruc-
tive testing. In 2020, Jerwick et al.”® achieved high-resolution
imaging in ophthalmology using a 1060 nm light source.
Considering the lateral resolution, in 2008, Ralston et al.””
proposed that a synthetic aperture could be used to prevent lat-
eral resolution deterioration with increasing measurement depth,
and this approach enabled large-depth imaging with high reso-
lution. In 2011, Blatter et al."® used a Bessel beam as the light
source, which alleviated the constraint between the imaging
depth and lateral resolution and improved the lateral resolution.
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In 2019, Zhou et al."" proposed optical coherence refraction
tomography (OCRT), which extends superior axial resolution
to the lateral dimension and reconstructs undistorted cross-
sectional images from multiple conventional images with angu-
lar diversity. Moreover, this approach corrects the distortion
caused by refraction and improves the lateral resolution by a
factor greater than 3. In 2022, Pahlevaninezhad et al."* pro-
posed a metasurface-based dual-beam illumination imaging
technique that is capable of imaging over a relatively large depth
range without affecting the lateral resolution. The experimen-
tal principles and results are shown in Figs. 14(b) and 14(c),
respectively.

Holography produces a complex-valued field of a target
via interference recording and diffraction reproduction. Since
Gabor!"™ first proposed holography in 1948, it has mostly been
based on highly coherent laser light sources. However, when a
laser is used as the illumination source, highly coherent noise,
such as speckle noise and parasitic interference fringes, will ap-
pear in the hologram and affect the image quality. Therefore,
holography based on partially coherent illumination has begun
to attract attention. In 2008, Kemper et al."®' proposed a time-
phase-shift digital holographic microscopy technique using
LED lights. The phase noise of LED and laser light sources
was tested under the same conditions, which proved that an
LED light source can effectively reduce phase noise and im-
prove phase measurement accuracy. In 2011, Choi et al."* sug-
gested that a dynamic speckle could be obtained by rotating
a ground glass screen to destroy the coherence of a highly co-
herent laser. Then, they implemented a digital holographic tech-
nique based on dynamic speckle illumination, which greatly
improved the lateral and axial spatial resolution owing to the
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wide angular spectrum of the scattered waves. In 2018, Cho
et al"" proposed a dual-wavelength off-axis digital holo-
graphic interferometry system with low coherence based on
an LED light source. Their method used two diffraction gratings
to adjust the central wavelength and bandwidth of the outgoing
LED beam and used filtering to extend the coherence of the
broadband light source to improve the SNR of the results. In
2020, Mann et al."® proposed a coaxial white phase-shifting
interferometer based on a white light source, which separated
the R, G, and B components from a single white light interfer-
ence pattern, thereby providing simultaneous multispectral in-
formation about a sample.

In summary, illumination is the source of the imaging link.
When illumination is introduced into an imaging system as
coded information, the high-dimensional physical information
of the light field can be fully utilized. This approach can increase
the resolution of the imaging system, the operating distance, and
the ability to adapt to the environment.

4.2. Computational medium

The computational medium is the most important part of a com-
putational optical imaging system. When light passes through
the scattering medium, the target information is hidden in the
light field; however, the difficulty of interpreting the light field
information is directly determined by the scattering medium.
When light is scattered, the photons received by the sensor
and camera are generally divided into two categories: ballistic
and scattered photons. When the light is scattered by an evenly
distributed static medium and the degree of scattering is small,
the unscattered ballistic light is dominant, the target information
in the scattered light field is more prominent, and the light field
is easy to interpret. However, when the scattering medium is
thick, the light is scattered several times, the ballistic light al-
most disappears, and only severely scattered light remains in
the final light field. Therefore, the target information must be
mined from the scattered light field before target interpretation
can be conducted.

When the degree of scattering is low, we can separate the
ballistic and scattered light, and use the ballistic light directly
to extract the target information. In general, methods such as
range gating and dark channels can be used to extract the bal-
listic photons, remove the scattered photons, and obtain the
target information. However, when the degree of scattering is
large, the scattered light must be used to extract the target in-
formation, and it is necessary to analyze and extract the target
information from the light field. This can be achieved using
methods such as deconvolution, speckle autocorrelation, wave-
front shaping, and transmission matrix calibration.

Nonvisible imaging technology is used to image invisible tar-
gets, which is achieved by extracting target information from
scattered light. Nonvisible imaging can be divided into active
and passive imaging technology according to whether it is nec-
essary to provide a light source. Physical dimension information
in the scattered light field, such as the intensity, polarization, and
phase, is analyzed and extracted to solve the nonvisible imaging
problem (Fig. 15).

4.2.1. Scattering imaging technique based on ballistic light

Extracting effective information in scattered light, currently,
there are three main methods: one is range gating, which uses
a small number of photons to recover the effective information
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in the optical field; another is to use dark channels to remove
water vapor, haze, and other scattered gases. The last is to ex-
tract and analyze the target signal based on the polarized infor-
mation of the optical field.

“Seeing farther and clearer” is the primary demand for active
imaging in remote sensing and target recognition. Active optical
imaging systems use their own light source to recover informa-
tion about the scene. To suppress photon noise inherent to the
optical detection process, the detection of many photons is usu-
ally required. However, in remote sensing of dynamic scenes
and microscopic imaging of biological samples, many photons
cannot be collected owing to the limitations of the luminous flux
and integration time. Therefore, a key challenge in such scenar-
10s is to use a small amount of photons to accurately recover the
information about the scene. Furthermore, for any fixed total
acquisition time, serial acquisition through raster scanning re-
duces the number of photons detected per pixel. The low num-
ber of returned photons, strong background noise, and limited
range of action are the main problems that must be addressed to
realize remote active sensing.

Previous studies have shown that single-photon light detec-
tion has high sensitivity and time resolution. The light was first
captured into flight by Abramson in 1978""*!, who used holo-
graphic technology to record the wavefront of a pulse and scat-
tered it using a white screen placed in the path. This high-speed
recording technique can be used for dynamic observations of
phenomena such as reflections, interference, and focusing
through static motion. In 2007, Kubota et al.""'¥ experimented
with in-flight light holography in a scattering medium. They
used a fringe camera with picosecond resolution to capture mov-
ing light in the scattering medium, thereby eliminating the need
for interferometry and coherent illumination. However, this
approach required additional hardware to raster scan 2D scenes,
which increased the acquisition time to several hours. In 2015,
Gariepy et al."™' simplified the data acquisition process and re-
duced acquisition time by achieving full imaging capability and
low light sensitivity with picosecond temporal resolution. Thus,
they provided an imaging solution for acquiring spatial and tem-
poral information. Their approach used 2D complementary
metal-oxide semiconductor (CMOS) arrays based on SPAD de-
tectors to obtain the data, and each pixel operated in a time-
correlated single-photon counting (TCSPC) mode.

These technological breakthroughs are based on 2D planes;
however, single-photon light detection can also be used to ob-
tain 3D shapes remotely by accurately measuring the ToF,
which has a variety of applications in fields such as Earth sci-
ence, construction, and defense. Therefore, a lot of effort has
been dedicated to developing single-photon light detection and
ranging (LiDAR) for long-range 3D imaging. Howeyver, in prac-
tical applications, the working range of single-photon LiDAR
systems still has some limitations owing to the effects of high
background noise, which results in weak echo signals, and it
cannot exceed several tens of kilometers above the Earth’s
atmosphere. To improve the photon recovery rate and noise tol-
erance, in 2014, Kirmani et al."'” developed low-flux imaging
technology, the first photon-imaging technology. The simulta-
neous acquisition of the subrule duration range and reflectance
information in the presence of high background noise is of great
value for microscopy and remote sensing.

Xu et al."" proposed and demonstrated an efficient photon
LiDAR method for long-range super-resolution single-photon
imaging within 8.2 km. In 2019, they achieved the longest
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distance single-photon imaging in the world, and their re-
sults were selected as one of the top 10 advances in Chinese
optics. This validation of an efficient, noise-resistant method
for photons demonstrates the feasibility of fast, long-range,
and low-power radar imaging. When an imaging device is
moved precisely below the pixel scale to capture a series of low-
resolution images using a fine subpixel scanning method, the
subpixel displacement between the images will suppress fre-
quency aliasing. This can be used to improve the imaging
resolution of the system. Xu et al."'"® developed a 3D deconvo-
lution method that could retrieve subpixel resolution informa-
tion from fine-scanning results to achieve image reconstruction.
The experimental device is shown in Fig. 16(e). They applied
this approach to single-photon LiDAR for long-range 3D imag-
ing and extended the distance limit to improve the imaging
range. In 2020, Li et al.""" realized active single-photon 3D im-
aging at a distance of 45 km in an urban environment. To meet
the challenge of ultra-long distance imaging, they developed
and optimized an efficient and low-noise coaxial scanning sys-
tem, which effectively collected a small number of echo photons
and suppressed background noise, as shown in Fig. 17(a). The
reconstruction depth obtained by various imaging algorithms is
shown in Fig. 17(b). Xu et al. demonstrated that the algo-
rithm successfully recovered the fine features of the building;
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therefore, scenes with multi-layer distributions can be accurately
identified.

These results clearly show that the algorithm proposed
by Xu’s team is the most effective for spatial and deep
reconstruction of remote targets. By applying the microscanning
method, the lateral resolution was shown to be approximately
0.6 m at a far field of 45 km, as shown in Fig. 17(c). This method
generates 3D images at the level of a single photon per pixel,
which allows objects to be identified and recognized at very low
light levels. The proposed high-efficiency coaxial single-photon
LiDAR system, noise suppression methods, and advanced com-
putational algorithms provide new opportunities for low-power
LiDAR remote imaging. In 2021, Xu’s team continues to in-
crease the long-range imaging distance. Li er al.™” have also
proposed a compact coaxial single-photon LiDAR system for
3D imaging at distances of up to 201.5 km. Using efficient op-
tical devices to collect and detect photons, new noise sup-
pression effects can be developed for remote active imaging
applications.

The single-photon detector has great potential in the field of
remote observation and target recognition, especially in the field
of single-photon LiDAR. By continuously improving the detec-
tion efficiency, reducing the noise level, optimizing the calcu-
lation algorithm, and realizing the integration and compact of
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Fig. 17 (a) Aerial view of the remote active imaging experiment. (b) Results obtained based on
different imaging algorithms. (c) Long-range 3D imaging over 45 km!'"l,

the detection system, as well as the in-depth advancement
of interdisciplinary research, the single-photon detector will
achieve longer distance and higher precision 3D imaging, pro-
viding strong technical support for a variety of practical appli-
cation scenarios.

Factors such as climate change and air pollution make it dif-
ficult to avoid foggy images. In various indoor and outdoor
scenes with fog and haze, there are varying concentrations of
suspended particulates, such as gaseous water and dust, which
can significantly reduce various aspects of image quality, as
shown in Fig. 18(a). As light propagates, it is affected by par-
ticles in the air, and it is scattered and absorbed, which weakens
the reflected light from the target object. Simultaneously, atmos-
pheric light becomes part of the image owing to scattering by the
air particles. These factors cause problems such as image color
attenuation, contrast reduction, increased blur, and detail loss,
which reduce the visual effect to different degrees and nega-
tively affect subsequent image processing. Video images of hazy
weather can be represented by atmospheric degradation models.

The atmospheric light intensity and its value at infinity are
relatively easy to estimate, which makes it easier to recover the
original reflected light intensity from the target that is not af-
fected by haze scattering. The atmospheric light intensity and
transmittance must be estimated with high accuracy to optimize
the image defogging effect. The dark channel prior (DCP) haze
transmission algorithm proposed by He ef al. in 2009"" is
based on the atmospheric degradation model theory, and it is the
most widely used method of image restoration. The algorithm
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analyzes fog-free images, and in most non-sky local areas it
finds that some pixels always have at least one color channel
with a very low value, which is called the DCP. The steps of
the DCP algorithm are shown in Fig. 18(b). Atmospheric light
and transmission map estimations are combined with a restora-
tion model to achieve image defogging and clarity processing.
DCP is a classic image processing algorithm, and it has been
widely studied owing to its excellent image quality and easily
understood and implemented process. This theory represents a
revolutionary breakthrough in the field of image defogging and
provides new avenues for improving image quality.

Since its introduction in 2009, a lot of research has been
done to improve the performance of the DCP algorithm. G. Bi
et al."* combined observations of fog-free or fog-free outside
images with multi-scale guided filtering and effectively reduced
problems such as inaccurate color information recovery, halo
artifacts, and block effects caused by the DCP algorithm;
avoided artifacts caused by sudden changes in the scene depth;
and obtained high-quality fog-free images. However, after re-
moving the fog, the images showed color distortion in the
sky area. Zhu et al."*' also proposed a method of artifact re-
moval based on the DCP algorithm, which used the energy min-
imization function to estimate the transmission, smoothing term,
and boundary term. Kim er al"* used a simple stretching
method and algorithm to estimate the relationship between the
transmission and the brightness saturation of a scene, which
effectively improved the detail and clarity of the image; how-
ever, the overall brightness still needed to be enhanced using
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Fig. 18 (a) Haze imaging model™, (b) Flow chart of the DCP dehazing algorithm!™",
(c) Comparison of the effects of other dehazing algorithms and the Lu Z dark channel dehazing

algorithm{',

additional algorithms. Based on the observation that dark chan-
nels are closely related to saturation and brightness, Lu et al.'*
proposed a novel algorithm that does not require additional cal-
culation of the DCP and avoids subsaturation when restoring
fuzzy images, as shown in Fig. 18(c).

A method based on prior knowledge has achieved some re-
sults in image defogging; however, its universality still requires
improvement. This is an important topic in current research.
Therefore, further exploration of methods that can be used to
make the prior knowledge-based method more widely appli-
cable and able to cope with the effects of different scenes
and types of fog is needed. In general, the dark channel method
based on prior knowledge is a promising research direction;
however, its universality and robustness require further study.

When light waves propagate through particular weather con-
ditions such as fog and haze, through water, or in biological
tissues, a large number of tiny scattered particles in the trans-
lucent medium will impose serious absorption and scattering
effects, partly change the transmission direction, and weaken
the energy of part of the light waves, as well as lead to a loss
of light field information and a decline in imaging quality.
Therefore, effectively removing the negative effects of scatter-
ing during imaging, recovering the lost light field, and improv-
ing the imaging quality have become hot issues. Currently, there
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are two main methods to reduce the scattering of light waves
from turbid media: image processing (which will not be detailed
here) and physical optical imaging technology, including polari-
zation technology. Polarization descattering technology is pri-
marily divided into difference-based, atmospheric-model-
based, Stokes-based, and Mueller-matrix-based polarization
imaging.

Polarization differential imaging technology highlights parts
of the image information using the difference between two im-
ages with orthogonal polarizations. The basic principle is to en-
hance image details by comparing the difference between two
orthogonal polarization vectors, improve image contrast, and re-
duce the impact of reflection, scattering, absorption, and other
phenomena on the image.

It can be assumed that the scattered light of the background
and the target light are completely polarized, and their polari-
zation directions differ according to the scattering medium.
As shown in Fig. 19(a), we rotated a polarizer so that the angle
between the light transmission axis and the polarization direc-
tion of the background scattered light was 45°, and two images
with orthogonal polarizations were obtained. By taking the dif-
ference between the two images, the effects of the background
scattered light can be eliminated, and the target light can be
isolated.
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Fig. 19 (a) Principle of polarization difference!™”. (b) Differences between conventional imaging
and polarization differential imaging!'?®.. (c) A is the imaging effect of the traditional TYO model, and
B is the imaging effect of active linearly polarized illumination!™, In (d)!"*, (d1) is a polarization
image, (d2) is a polarization angle image, (d3) is an imaging effect of traditional polarization differ-
ential imaging, and (d4) is an imaging effect of adaptive polarization differential imaging.

The concept of polarization differential imaging was pro-
posed in 1995 by Cameronda et al., from the University of
Pennsylvania, after being inspired by the polarized vision of
animals"*®". Through a series of experiments, they found that
polarization differential imaging can substantially magnify the
details of conventional images. In 1996, Tyojs’ team from
the University of Pennsylvania in the United States began re-
search on polarization differential imaging under the condition
of macro scenes'”’”". They found that compared with traditional
imaging, in a scattering environment, polarization differen-
tial imaging can better reflect image details, enhance image
contrast, and achieve higher image quality!'”, as shown in
Fig. 19(b).

Because the reflected light of the target and the backscattered
light from the scattering medium will have a negative impact on
imaging under passive illumination, Kirmani et al. applied ac-
tive linear polarized light illumination based on the traditional
model to eliminate this effect. Experiments have proved that
with active illumination the imaging is improved. The back-
ground noise of the image is significantly reduced"*", as shown
in Fig. 19(c). In 2006, Yemely et al. at the University of
Pennsylvania proposed an adaptive polarization differential
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imaging method based on the principal component analysis of
scene polarization statistics'*”. Yusheng and Pucheng of the
Anhui Institute of Optics and Fine Mechanics at the Chinese
Academy of Sciences proposed an adaptive polarization differ-
ence method based on minimum mutual information, aiming to
solve the problems with traditional polarization difference meth-
ods and combining information theory. The Stokes vector was
used to obtain the polarization information of the target, and the
polarization images in each direction were calculated. By com-
paring the mutual information between the images, the two
least correlated images were selected for differential imaging.
The results show that this method greatly improved the image
quality, as shown in Fig. 19(d).

Polarization differential imaging technology can improve the
clarity of target information in turbid water and has transforma-
tive applications in many fields, such as underwater rescue,
resource exploration, and biomedicine. Current imaging tech-
nology research focuses on the separation of the target and back-
ground scattered light using the difference in polarization and
has performed well in practical applications.

However, there has been comparatively little focus on the ex-
act distributions of the polarization characteristics of the two,
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which may affect the accuracy and efficacy of the imaging. In
traditional imaging processes, the same polarization direction is
usually used for the whole image, which practically limits the
flexibility of imaging. Moreover, the problem of optimal imag-
ing angle extraction with different background scattered light
directions at different positions has not been sufficiently solved,
which may lead to unsatisfactory imaging results. In addition,
the brightness of polarization difference images is not typically
high, which limits its application in low-brightness environ-
ments. Most existing technologies are for static target imaging
only; moving target imaging needs further research. This greatly
limits the application of polarization differential imaging tech-
nology in some fields. These challenges and problems will
become the primary focus for future polarization differential
imaging technology development.

The first atmospheric model was proposed in 1975 by
McCartney!*". Narasimhan and Nayar derived a monochro-
matic atmospheric scattering model based on McCartney’s
attenuation and ambient light models"**'**],

According to their model, the light intensity received by a
camera sensor mainly comprises two parts: the directly transmit-
ted light emitted by the target and the scattered atmospheric
light, as shown in Fig. 20(a). Because the scattering particles
in the atmosphere also scatter the radiation from the Sun,
the component of scattered light reflected by these particles
into the camera is called atmospheric light, and its intensity will
increase with increasing propagation distance. This is the pri-
mary cause of image degradation. Inspired by the atmospheric
scattering model, in 2001, Schechner et al. began a series of
studies on polarization descattering in atmospheric scattering
media at the Israel Institute of Technology. They established a
set of classical polarization descattering models, as shown in
Fig. 20(b). The models obtain two orthogonal polarization
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images by rotating the polarizer in front of the lens and produce
a clear image according to the difference!**'*!,

In the Schechner model, the light scattered by atmospheric
particles is usually partially polarized, whereas the light radiated
by the target is completely unpolarized. Taking the polarization
direction of atmospheric light as a reference, the images polar-
ized parallel and perpendicular to the reference direction are
collected, and the A_oo and the polarization degree P are suc-
cessfully estimated to achieve the scene defogging. The model
they established weakens the attenuation and absorption of scat-
tered particles during light transmission, simplifies the calcula-
tion, and achieves a good scattering effect. Their method
requires a set of orthogonal polarization images, namely the best
polarization image I_Best and worst polarization image I_West,
which are difficult to obtain in practice.

Based on this model, Fei of Xidian University conducted a
multi-scale analysis of the images with frequency information.
Different polarization states corresponding to different weather
conditions were classified and solved to obtain clear target im-
ages, as shown in Fig. 20(c). In addition, the depth of the target
is estimated by the mechanism of the interaction between the
light wave and scattering medium. In 2006, Schechner et al.
applied their model to an underwater scattering environment
and achieved good results"*. However, the model is flawed
and does not consider the effect of wavelength on the scattered
light. Therefore, Fei et al. plotted the scattering and absorption
coefficients of pure seawater in the visible light range, showing
that scattering increases with decreasing wavelength. Thus, they
proposed an active polarization imaging method based on wave-
length selection and used red-light illumination to minimize
the scattering during light propagation. This method success-
fully transformed undetectable underwater targets with high
turbidity into detectable targets'”, as shown in Fig. 20(d).

Fig. 20 (a) Schematic diagram of the atmospheric scattering model"®*'*, |n (b), A and B are the
best and worst polarization images, respectively, and C is the effect of dehazing using the
Y. Y. Schechner method"**'®, In (c), A is the original intensity image under dense haze condi-
tions, and B is the rendering after multi-scale polarization imaging trans-haze algorithm!'*¢],
(d) Comparison before underwater scattering imaging!®”..
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Different teams optimized the models for speed and the effects
of scattered light, maximizing the quality of the images.

The imaging efficacy of traditional differential polarization
imaging technology depends largely on the choice of two
orthogonal polarization images, and it is necessary to ensure that
the scattered light has the same intensity in the two images.
However, rotating the polarizer is a complicated operation,
and it is difficult to obtain two appropriate polarization pictures.
Heng et al. proposed a method to obtain polarization difference
images using the Stokes vector*, as shown in Fig. 21(a).

The polarization difference image can be obtained based on
the azimuth of the scattered light and the Stokes vector of the
scene. In 2018, Guan et al. analyzed the interaction between
scattered light and polarizers using the Stokes—Mueller matrix
form and proposed an interpolation method based on the Stokes
vector to replace the rotating polarizer. Experiments have
proved that, compared with direct imaging, Stokes vector-based
imaging can effectively reduce the influence of scattered light
and enhance image contrast’*”, as shown in Fig. 21(b).

In addition to improving the defects of traditional differential
imaging, the Stokes vector is also used in other polarization im-
aging methods. In 2021, Guan introduced low-pass filtering
into a polarization-angle-based polarization imaging model
and overcame the disadvantage of noise sensitivity when esti-
mating polarization angle values. Also, in 2021, Pingli et al.
of Xidian University established an underwater polarization im-
aging model to describe light transmission through polarization
information derived from the Stokes vector. In addition, based
on the independent characteristics of the target and backscat-
tered light, an optimization function was designed to estimate
target and backscattering field information. Experiments and

y (904
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mean square error analysis verified that this method can accu-
rately remove backscattered light and recover target infor-
mation"*”, as shown in Fig. 21(c). In the same year, Jin et al.
solved the polarization estimation problem of target and back-
scattered light in underwater polarization imaging, using the
Stokes vector method to calculate the polarization of target light
at each pixel point in the scene*'\. This global pixel calculation
method has a marked effect on the image detail recovery of
underwater scenes and realizes clear underwater vision; the
effect of backscattered light on underwater imaging is effec-
tively suppressed, and the image contrast is significantly im-
proved, as shown in Fig. 21(d).

From the above analysis, the Stokes-based polarization de-
fogging imaging method is superior to the polarization differ-
ential defogging imaging method in performance. This is
because Stokes vectors contain richer and more useful polariza-
tion information, such as the degree of polarization (DoP) and
angle of polarization (AoP). This information can more accu-
rately reflect the characteristics and laws of the background scat-
tered light caused by particles in the scattering medium.

In the process of defogging imaging, it is important to accu-
rately obtain the polarization information in the scattering
medium to recover a clear image. By analyzing the DoP and
AoP in the Stokes vector, the Stokes-based polarization defog-
ging imaging method can suppress the background scattered
light more effectively, thus improving the image quality. In con-
trast, the polarization differential defogging imaging method
can only use the differential component of the polarization in-
formation, which may not be the complete polarization informa-
tion in the scattering medium, resulting in a slightly inferior
defogging effect. To control the polarization state of the light

(b)

Raw image Target light Scattered light

Fig. 21 (a) Principle of polarization imaging based on Stokes"®. In (b)"*, b, is the imaging effect
based on Stokes vector interpolation, and b; is the imaging effect of traditional differential imaging.
In (c)"*, (c1) is the original polarization image, and (c2) is the rendering of the polarization dehaz-
ing method based on the polarization angle distribution analysis. In (d)!'*", 1 is the original intensity
image, 2 is the reconstructed target image, and 3 is the estimation of backscattered light.

Advanced Imaging

012001-25

2024 * Vol. 1(1)



Liu et al.: Future-proof imaging: cemputational imaging

source more accurately, researchers have also used a Mueller
matrix to characterize the polarization information of the light
field.

To effectively suppress the scattering noise, Morgan proposed
the rotationally orthogonal polarization imaging method"**'; how-
ever, it was not without issues, such as the detection being de-
pendent on the selection of the polarization axis and the low
efficiency of the rotational polarization axis. In this method,
the polarization information based on the Mueller matrix replaces
the polarization filtering performed by the rotary polarizer, which
controls the illumination polarization angle more accurately, and
the fast imaging process.

Considering the influence of the polarization state of active
illumination on the target, in 2021, Wang et al. proposed a
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calculated polarization differential imaging descattering method
based on a 3 x 3 Mueller matrix and active illumination modu-
lation, as shown in Fig. 22(a). The influence of the active illu-
mination polarization state on the image quality was extended,
and the traditional polarization difference method and active
polarization illumination filtering were combined. A compre-
hensive descattering method based on two dimensions of system
input (active illumination modulation during imaging) and out-
put (polarization processing after imaging) was implemented.
This method can significantly improve the global quality of
the descattered image'*’!, as shown in Fig. 22(b). In 2022,
Fei et al. developed a polarization descattering method using
a Mueller matrix, as shown in Fig. 22(c). By studying the back-
ward distributions in the turbidities of different nephelometric

by (bs)

Fig. 22 (a) Principle of polarization difference based on the Mueller matrix!'*%. In (b)), (b1), (b2),
and (b3) are the intensity images of three targets in a highly concentrated scattering medium,
(b4), (b5), and (b6) are descatter images of three targets under the worst linearly polarized light
illumination, and (b7), (b8), and (b9) are the descattering images of three targets under optimal
linearly polarized light illumination. In (c)™4, (c1) is the intensity image, (c2) is the image recovered
with the proposed descattering method, and (c3) and (c4) are magnified views of the region of
interest marked with a red rectangle in (c1) and (c2).
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turbidity units, they found that the background intensity was
significantly linearly correlated with the depolarization index.
Thus, they derived the depolarization index from the Mueller
matrix and characterized the scattering medium by combining
the developed optimal function to estimate the transmittance
map. By quantifying light attenuation using transmittance maps,
a clear vision of the target can be restored. This method enhan-
ces underwater vision in varied turbidities using only informa-
tion from the scattering medium."*

4.2.2. Computational light field restoration technology based
on scattered light

The technique of calculating light field restoration based on
scattered light refers to the integrated consideration of ballistic
and scattered photons by analyzing the imaging response of the
target at the sensor plane after transmission through the scatter-
ing medium. Although the imaging response of a scattering
medium is complex and difficult to fully obtain, for a certain
FOV the medium has spatial translation invariance that can
be used for local analysis of the imaging response. This theory
is called the “memory effect” of the scattering medium. Based
on this theory, we can develop correlation imaging techni-
ques based on the spatial characteristics of scattering media.
Additionally, we can fully model the imaging response. When
the parameters of the partial scattering medium are known, we
can estimate the imaging response and thus solve an inverse
imaging problem, such as the atmospheric transmission equa-
tion. Further, we can directly calibrate the scattering imaging
response prior, such as the scattering transmission matrix cali-
bration. Then, using the imaging response obtained from the
calibration, a more accurate reconstruction of the target can be
produced. These methods are all based on the spatial character-
istics of the scattering medium. Through analysis and modeling
of the imaging response, reconstruction of the target object can
be realized. This can improve the accuracy and expand the ap-
plication range of imaging to provide more accurate imaging
solutions for various fields.

Image deconvolution is an image-quality improvement tech-
nique that estimates the original undistorted image from the
distortion and degradation of observations, and reduces and
eliminates image distortion and noise as much as possible.
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This is highly useful for the advanced research and application
of imaging, such as feature extraction, automatic recognition,
and image analysis. In the past 50 years, image deconvolution
has been applied to many scientific and technological fields,
such as astronomical observation, medical imaging, space ex-
ploration, military science, remote sensing and telemetry, bio-
logical science, case detection, and industrial vision.

The convolution between the PSF and the input image is
equivalent to filtering the input image, suppressing or losing the
high-frequency components of the input image. Deconvolution
is an inverse process, and the result may deviate from the real
solution. To obtain the most realistic solution possible, it is nec-
essary to make an appropriate compromise between restoring
the image and amplifying the noise. By measuring the PSF
of the scattering imaging system and using the convolutional
relationship between the speckle generated by the target and
the imaging system, object reconstruction can be realized
through a deconvolution operation. In 2016, Edrei er al. dem-
onstrated a new microscopy technique that utilizes the optical
memory effect (OME)"*!, as shown in Fig. 23(a). This tech-
nique can image through cloudy media below the diffraction
limit of the optical system. The technique uses deconvolution
image processing to estimate the system PSF by the blind
processing or using guide stars embedded in the target plane
medium so that no iterative focusing, scanning, or phase recov-
ery procedures are required. However, their method can only
image in the object plane and cannot obtain the axial informa-
tion of the object. In 2018, Xie et al. studied and developed the
properties of axially scattered light"*' to recover objects in a
large FOV with depth resolution. They described the relation-
ship between the PSFs of thin scattering media at different refer-
ence points, as shown in Fig. 23(b). By adjusting the scale of
one PSF, other PSFs from different object planes can be in-
ferred, enabling the layer-by-layer reconstruction of three-layer
objects outside the original DOF through the thin scattering me-
dia. The plane and axial information of a static target can be
obtained; thus, information from a moving target becomes
the primary research direction. To achieve super-resolution im-
aging through the scattering medium, Dong et al. proposed ran-
dom optical scattering localization imaging technology in 2021,
as shown in Fig. 24", Their method used the speckle
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Fig. 23 (a) Edrei et al. demonstrated a new microscopy technique that utilized the optical memory
effect (OME)"*.. (b) Xie et al. described the relationship between the PSFs of thin scattering media

at different reference points!™,
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Fig. 24 (a) Super-resolution imaging through scattering media with SOSLI in comparison to other
imaging techniques. (b) Principle and simulation results of SOSLI. (c) Experimental results of im-
aging through a ground glass diffuser with different techniques. (d) Experimental demonstration of
three techniques for imaging several complex objects hidden behind a ground glass diffusert"..

correlation properties of the scattering medium to retrieve im-
ages with a resolution of 100 nm, which is 8 times better than
the diffraction limit. The above methods were all realized within
the range of OMESs. In 2022, Lei"**! used matrix decomposition
and fingerprint-based reconstruction to defog the speckle
pattern emitted by fluorescent objects under unknown random
illumination. The image retrieval process was based on decon-
volution technology instead of the previously used phase
retrieval method. The FOV covered by this method can reach
3 times the OME range. The simplicity of this non-invasive im-
aging technique, which requires neither a spatial light modulator
(SLM) nor a guide star, opens a promising avenue for deep fluo-
rescence imaging in highly scattering media and can be ex-
tended to a variety of incoherent contrast mechanisms and
illumination schemes.

Although the research and application of deconvolution
scattering imaging technology have made great progress, it
still faces several problems that must be solved before its
widespread application. For example, as the thickness of the
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scattering medium increases, the memory effect range will de-
crease significantly, which may cause failure in the deconvolu-
tion method. Also, the current process needs to be accelerated
to adapt to a dynamic scattering environment and further im-
prove the resolution, and we must learn how to obtain the
PSF with high precision in a complex environment. To solve
these problems, an in-depth study of scattering physics, techni-
cal and theoretical development, and multidisciplinary research
is required.

The deconvolution method requires intrusive calibration of
the scattering medium, that is, obtaining the PSF of the system.
However, in practical applications, this is often difficult to
achieve, such as in biological tissues, where invasive calibration
can destroy cell activity. Furthermore, it is very difficult to ob-
tain the PSF in unknown scenarios. Therefore, there is an effort
to find a non-invasive scattering imaging method that does not
need to calibrate the scattering medium and only needs to use
the scattering light field information obtained by the detector to
obtain and interpret the target information.
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The discovery of the OME has promoted the development of
non-invasive scattering imaging techniques. In 1988, Feng et al.
discovered the angular optical memory effect (AME): a small
displacement of the incoming wave vector does not change
the speckle image formed by the outgoing wave vector on
the detector but only causes a displacement in the opposite di-
rection. Based on the AME, in 2012, Bertolotti et al."* pro-
posed a scanning-based non-invasive speckle reconstruction
technique, referred to as scanning-based speckle correlation.
It does not need to calibrate the scattering medium parameters
or obtain the microscopic characteristics of the scattering
medium; however, the method requires 3D scanning of the sam-
ple in the AME range, which takes a long time. To overcome the
long scanning time, efficient non-invasive scattering imaging
was pursued. In 2014, Katz er al. of Israel found that, on the
basis of a strong correlation, the autocorrelation of a PSF is
a spiking function. Thus, they proposed single-shot speckle cor-
relation (SSC)™. The Wiener—Khinchin theorem can be used
to obtain the Fourier amplitude information of a target from the
speckle autocorrelation. Meanwhile, HIO and error reduction
phase recovery algorithms proposed by Fienup et al.™" can
be used to reconstruct the structure of the imaging target.
The results are shown in Fig. 25(a).

Owing to the single frame imaging characteristics of SSC, it
takes only between 10 ms and 2 s exposure to acquire single
experimental data, which greatly improves the temporal resolu-
tion of scattering imaging and has received extensive attention.
When SSC was proposed, it only considered imaging 2D planar
binary objects. To realize the imaging of axially extended
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targets, Takasaki et al. introduced phase space measurement into
scattering imaging in 2014. Because spatio-angular correlation
is determined by transmission distance, the axial depth of a tar-
get can be determined™”. This method compensates for the
deficiencies of the AME, which only focuses on angular corre-
lation and cannot distinguish the target axial direction. The
imaging optical path and experimental results are shown in
Fig. 25(b).

Limited by the scattering medium AME range, the effective
imaging FOV of SSC technology is often less than 1° for typical
biological tissues. Because the calculation of the statistical char-
acteristics of the speckle field is related to the number of mea-
surements, to improve the SNR of PSF measurements, this
method needs thousands of speckle images in advance. Tang
et al."™, at Nanyang Technological University in Singapore, di-
vided a large FOV into discrete parts. The size of each part of the
object was in the memory effect range, and the autocorrelation
of the PSF was a function. They used the PSF to keep translation
invariance within the memory effect range, decouple and recon-
struct different parts of the target, and perform spatial fusion for
the whole target. The imaging device and results are shown in
Fig. 25(c). To achieve target imaging beyond the AME range, Li
et al. proposed a multi-target super-AME imaging technology
based on independent component analysis'**. The method takes
full advantage of the statistical independence of speckles that are
not in the AME range. By changing the illumination mode,
multiple speckle patterns with different proportions of target in-
formation can be obtained. Independent component analysis
was used to de-alias target speckles in multiple speckle plots,
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Fig. 25 (a) Single-shot speckle correlation™". (b) 3D imaging using a diffusing medium via spatial
speckle intensity cross-covariance!®?. (c) Superposed reconstruction to enlarge the limited
FOV!'®3, (d) Pipeline for multitarget imaging through scattering media regardless of OME!*,
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and multi-target imaging through scattering media was realized.
The reconstruction flow chart is shown in Fig. 25(d).

The autocorrelation scattering imaging method uses the ac-
quired speckle pattern to achieve non-invasive imaging of the
target, which is of great significance for imaging through un-
known scenes and living media, such as biological tissues.
Moreover, it has the potential of real-time scattering imaging
to interpret the target information from a single-frame speckle
pattern. Autocorrelation scattering imaging is not only limited
by the OME but is also sensitive to the illumination spectrum
width and time-varying characteristics of the scattering medium.
When the illumination spectrum width increases or the scatter-
ing medium changes with time, the contrast of the collected
speckle pattern decreases, and the method cannot be applied.
The realization of wide-spectrum illumination or non-invasive
imaging through dynamic scattering media will be a great step
toward the practical application of autocorrelation scattering
imaging.

The global development of optical devices has promoted the
development of image processing and computational imaging
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technology. At the same time, many breakthroughs have been
achieved in scattering imaging technology research. With the
appearance of optical devices such as SLMs, the phase control
of light fields is realized. Wavefront shaping (WFS) technology
utilizes optical devices such as SLMs to compensate for the ran-
dom phase effect of the scattering medium to focus the scattered
light field and image the target.

The theory of wavefront modulation was first developed by
Freund et al. at Bar-Ilan University in Israel™ and was
first experimentally verified by Vellekoop et al. of the
Netherlands"**"?, as shown in Fig. 26. By adding SLMs or
other phase modulation devices to the optical path, the addi-
tional phase of the light field from the scattering medium can
be compensated for, realizing a focused light field through the
scattering medium. At this point, the scattering medium can be
viewed as a conventional geometric lens. Imaging through scat-
tering media is realized in the OME range. The feedback wave-
front optimization divides the SLM into N modulation regions.
The intensity of the target region obtained by the camera is taken
as feedback information, and the best phase of modulation is

Fig. 26 (a) Wavefront shaping technology!"®!. (a1) Experimental setup. (a2) System with a layer
of airbrush paint present and unmodified incident wavefront. (a3) The wave was shaped to achieve
constructive interference in the target. (b) Spatiotemporal focusing by optimizing a two-photon
fluorescence (2PF) signal™®. (b1) Experimental setup. (b2) 2PF images before optimization at
the optimized plane (x-y). (b3) 2PF images after optimization at the optimized plane (x-y).
(c) scattered light fluorescence microscopy!™®’. (c1) Experimental setup. (c2) Seen through the
scattering layer with a wide-field fluorescence microscope. (c3) Seen through the scattering layer
with an SLM microscope.
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when the intensity is the strongest. The phase modulation of the
N regions is carried out by the SLM to focus the light field.

The wavefront shaping technique proves that the scattering
medium can be regarded as a “black box” without understand-
ing its properties. The interference of the scattering medium can
be overcome by modulating the phase of the incident light
wavefront so that the light can pass through the scattering
medium and be focused on a very high growth factor. In 2010,
on the basis of traditional imaging, Mosk added a scattering
medium to the imaging optical path and used feedback optimi-
zation wavefront shaping technology to obtain a focal point that
was one-tenth the size of the traditional lens focusing spot!®.
This proves that scattering effects can be used to achieve high-
resolution imaging and that not all are detrimental. The resulting
focus and image are even sharper than in transparent media, as
shown in Fig. 26(a).

The wavefront modulated optical path can treat the scattering
medium as a traditional lens and focus the image on the detector.
However, the wavefront modulated imaging method requires in-
trusive calibration of the system, and the feedback optimization
process is time consuming. Beyond imaging, wavefront modu-
lation technology has important prospects in biomedicine, pho-
togenetics, and more.

The wavefront shaping technique compensates the phase in-
terference caused by the scattering medium through the phase
modulation device when the transmission characteristics of the
scattering medium are not clear and the scattering medium is
equivalent to a black box. In contrast, the transmission matrix
calibration method calibrates the influence of the scattering
medium in advance. After the corresponding relationship be-
tween the input and output light fields through the scattering
medium is clarified, the scattered light field from the input
medium can be obtained by solving the target scattering light
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field. At this point, the scattering medium is no longer a black
box, and its effects are relatively clear.

To clarify the influence of the scattering medium on the input
light field, in 2010, Popoff!*"! of France proposed measuring the
transmission matrix of the scattering medium. They posited that
the amplitude and phase relationship between the input and out-
put light fields passing through the scattering medium was
deterministic. An experimental device for measuring the optical
transmission matrix of a scattering medium with a single arm
was proposed, as shown in Fig. 27(a). The SLM regulatory area
was divided into a central control area and a peripheral reference
area, which provided the reference signals needed to measure
the transmission matrix. To improve the SNR of the light in-
tensity distribution map of the output field recorded by the
CMOS camera after passing through the scattering medium,
the Hadamard basis was adopted as the input light field to
achieve imaging through an 80-pm-thick ZnO sample. Choi!'®”
of South Korea hypothesized that the transmission matrix of the
scattering medium could be determined according to different
incident-light spatial frequencies, and a 2D galvanometer was
used to obtain the transmission matrix. Compared with the
transmission matrix in air, the reconstructed matrix in the fre-
quency domain is clearer, as shown in Fig. 27(b).

The obtained transmission matrix reflects the transmission
characteristics of the scattering medium, elucidating the corre-
sponding relationship between the input and output light fields.
Compared with other scattering imaging methods, transmission
matrix calibration imaging can image complex targets and has a
strong descattering ability and higher reconstructed target def-
inition. However, the resolution of the phase modulation device
and detector determines the obtained matrix dimensions, which
also limits the FOV. The acquisition of the transmission matrix
requires an invasive calibration of the medium, and because the
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Fig. 27 (a) Measuring transmission matrix in the spatial domain!®". (a1) Experimental setup. (a2)
Initial grayscale image. (a3) Reconstructed image using scattered input. (b) Measuring the trans-
mission matrix in the spatial domain'®?, (b1) Experimental setup. (b2) Pattern before inserting the
scattering medium. (b3) Reconstructed image using scattered input.
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calibration process is long (on the order of minutes) this method
cannot be applied to dynamic media such as biological tissues.

4.2.3. Non-line-of-sight imaging technology

Owing to the absence of light field information and the limited
imaging models, traditional imaging techniques cannot image
objects outside the FOV. In recent years, with the development
of new photoelectric sensors and improvements in information
computing power, NLOS imaging technology has developed
rapidly. According to the imaging mechanism, NLOS imaging
can be divided into two types: active and passive imaging.
Active NLOS field imaging requires modulated light source
detection imaging. The modulated light source (usually a laser)
is controlled by the detector, and the emitted photons are re-
flected off an intermediate surface to the target. The target sur-
face is then reflected twice, and a third reflection occurs on the
intermediate surface before the photons are received by the
detector. The recovery and reconstruction of the target are pri-
marily based on the calculation of the flight time of the photons.
In 2012, the Multimedia Laboratory of the Massachusetts
Institute of Technology used femtosecond pulses and stripe
cameras to achieve the reconstruction of hidden objects in
NLOS scenes for the first time!'®!. In the experiment, a pulsed
laser with a pulse width of 50 fs was used to illuminate the
scene, and a fringe tube camera was used to record the photon
flight time, as shown in Fig. 28(a). Compared with other ToF
measurement methods, this method has a better imaging reso-
lution that can reach centimeter levels. However, the stripe-tube
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camera is expensive and has some disadvantages, such as low
quantum efficiency and serious noise.

SPAD uses a very strong bias voltage so that a single photon
can create an avalanche breakdown, thereby converting photon
information into current pulse information. This is usually com-
bined with a single photon counter to detect the ToF of a single
photon. In 2015, Buttafava et al. collected the target photon in-
formation through a combination of the above devices and re-
constructed the target shape using the late back projection
algorithm™®, as shown in Fig. 28(b). SPAD has higher optical
quantum efficiency (up to 40% efficiency) and relatively low
cost but has lower temporal resolution than streak cameras.
ToF cameras typically use sinusoidal amplitude modulation
light sources to illuminate the NLOS field scene and demodulate
the propagation path of the photon through the phase difference
between the received photon information and the transmitted
modulation information. They have a lower cost than other pho-
ton detection devices, typically only a few hundred dollars. This
low cost has led to commercial use for some devices, such as the
Microsoft Kinect camera. In 2014, Hullin and Heide et al."* in
Germany, respectively, used ToF cameras to achieve target
reconstruction in NLOS field scenes, as shown in Fig. 28(c).

Passive NLOS field imaging requires the use of photon in-
formation reflected from the intermediate surface to restore im-
ages. In contrast to the active method, passive imaging does not
need to modulate the lighting source and only needs to collect
ambient light to complete the recovery and reconstruction of
hidden targets beyond the line of sight, thereby simplifying
the experimental equipment and becoming more suitable for
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Fig. 28 (a) NLOS imaging based on a streak cameral®. (a1) The process of capturing photons.
(a2) An example of streak images sequentially collected. (a3) The 2D projected view
of the hidden object. (b) NLOS imaging based on SPAD!"®. (b1) Experimental setup. (b2)
Objects in the scene to be reconstructed. (b3) Reconstruction of the letter T. (c) NLOS imaging
based on ToF!'™. (c1) Experimental setup. (c2) Unknown object. (c3) Reconstructed depth
(volume as probability). (c4) Reconstructed depth (strongest peak).
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practical applications. However, owing to the use of natural light
illumination, the detection equipment can collect very little pho-
ton information, rendering the image quality poor and the noise
large. Using ambient light to realize the passive imaging of
NLOS objects is of great significance to extending the applica-
tion range of NLOS imaging technology.

Owing to scattering from the intermediate surface, the out-
going photons become random and disordered and lose the
original target information. However, some coherent features
are retained in the residual photon information, which can be
used for target reconstruction in NLOS field scenes.

Imaging based on spatial coherence information typically
uses high-precision interferometers to measure the coherence
characteristics of photons in different spatial positions and com-
putes and reconstructs the geometry information of hidden ob-
jects using the measured spatial coherence function. In 2018,
Batarseh et al. used a dual-phase Sagnac interferometer
(DuPSal) to successfully reconstruct target information in
NLOS field scenarios based on the above theory®!. As shown

in Fig. 29(a), an object irradiated by incoherent light was re-
ceived by DuPSal after diffuse reflection of the intermediate sur-
face, and the phase information of the spatial coherence function
of the object was obtained by changing the position. The geo-
metric shape of the target was reconstructed, and the positional
information of the target was estimated. Based on this, in 2019,
Tamasan et al. used the four-dimensional (4D) spatial coherence
function to achieve target reconstruction. By integrating the in-
tensity of the NLOS field and spatial coherence infor-
mation at different scales, NLOS imaging was considered a
multi-criterion convex optimization problem"®”, as shown in
Fig. 29(b). Based on the sparsity of the image, the optical field
transmission model was constructed, and an alternate direction
multiplier algorithm was proposed to solve the convex optimi-
zation problem effectively.

Based on the spatial coherence function obtained by mea-
surement, the NLOS imaging technique constructs a trans-
formation model in the observation plane to solve the target
information, using spatial coherence and intensity information
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Fig. 29 (a) Shape recovery from coherence measurements!'®. (a1) Experimental setup. (a2),
(a3) Plots of real and imaginary components of SCF measured for the square and equilateral
triangle objects, respectively. (b) NLOS imaging based on multimodal data fusion!®”. (b1)
Experimental scene. (b2) The intensity sample. (b3) The reconstruction using this intensity sample
alone. (b4) The additional measurement of scattered coherence. (b5) The reconstruction when
both the intensity and coherence measurements are used.
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to construct a multi-criterion optimization problem. In the time
dimension, the location of the target can be obtained by inter-
preting the cross-correlation results in the TOF information.

Light intensity information is the most intuitive and relatively
simple type of data with which ordinary cameras capture visual
data. This allows it to play a key role in passive NLOS imaging
technology. Because this technology aims to capture infor-
mation about objects without a direct line of sight, light inten-
sity information provides the possibility to infer the presence
and state of objects even when the line of sight is blocked.
Therefore, the research and development of technology that can
effectively use light intensity information are crucial for the
application of passive NLOS imaging in practical engineering
projects. In 2017, Bouman et al. at the Massachusetts Institute
of Technology designed a system known as Edge Camera.
The system uses consumer-grade cameras commonly available
on the market to capture shadows in the environment!'®®,
Recovering the movement of objects from these shadows is akin
to reverse engineering and makes visible the movements hidden
behind corners. In 2018, Tancik et al.""® used data-driven tech-
niques to locate and image objects in nonvisual scenes. Their
method breaks the limitations of traditional imaging and allows
imaging without a direct light source, extracting subtle informa-
tion that is difficult to detect by the eye, as shown in Fig. 30(a).
To reduce the amount of information to be collected and im-
prove the imaging efficiency, in 2019, Saunders et al. of Boston
University proposed a new NLOS imaging method with an oc-
clude, named computational periscopy'’”, shown in Fig. 30(b).
This technique can predict the position of the occluder and real-
ize non-occluder imaging by reflecting the NLOS scene image
as measured by a single camera when the occluder shape is
known. Yedidia et al. extended the NLOS imaging scene with
occluders to a more general situation and abstracted the whole
system into a convolutional model"”" by assuming that the ob-
served scene, occluders, and NLOS scenes to be imaged are lo-
cated on parallel planes, as shown in Fig. 30(c). Using a video
frame image of the observed scene, the shape and size of the
occluders were estimated by blind deconvolution.

The intensity information obtained by ordinary cameras can
be used to achieve the target reconstruction of NLOS scenes.
This method constructs a transformation matrix between the
NLOS object and the detection plane, and it converts the image
to the inverse matrix. Using objects such as occluders or corners
to increase the sparsity of the transformation matrix between the
object and the observation plane is conducive to improving the
solution.

In the NLOS scenario, an object solution using intensity
information needs occluders to improve the sparsity of the cal-
culation process. In 2019, Hassan proposed the use of the polari-
zation domain information of the scattered light field to satisfy
the sparsity condition and solve the inverse problem''. When
the intensity information could not be interpreted, a polarizer
was inserted in front of the camera to obtain polarization infor-
mation. A diffuse reflection material was modeled as a combi-
nation of numerous micromirrors to achieve the reconstruction
of NLOS targets. The results are shown in Fig. 31(a). Based
on this same hypothesis, in 2020, Tanaka et al. introduced a
polarization-related leakage effect coefficient into the transmis-
sion matrix by obtaining the polarization information of the
NLOS light field, related to the incident direction, exit direction,
and light transmission axis of the polarizer, to achieve modula-
tion of the transmission matrix, as shown in Fig. 31(b)!"".
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In contrast to the intensity information, the sparsity of the
transmission matrix needs to be improved using occluders,
and the polarimetric NLOS imaging technology uses the polari-
zation of the light field to achieve regulation of the matrix. This
removes the scene’s dependence on the modulation of the ma-
trix. However, this method is limited by the polarization state of
the scene light, and its applicability when the light source is not
linearly polarized needs to be improved.

In addition to the use of visible information in NLOS scenes,
the use of nonvisible band information, such as infrared light,
can also realize the reconstruction of target information. When
visible light cannot penetrate obstacles or little visible light in-
formation is reflected, the advantages of infrared bands become
obvious.

Compared with the detection method for visible light infor-
mation in NLOS scenes, the target information in the long-wave
infrared band has stronger specular reflection characteristics.
In 2019, Maeda proposed NLOS thermal imaging technology
based on the long-wave infrared spectral range''™. A thermal
imaging camera was used to obtain long-wave infrared informa-
tion emitted by NLOS objects after a single reflection. Target
reconstruction was achieved by the new optical transmission
model, as shown in Figs. 32(a)-32(c). When the intermediate
surface was a copper plate, marble slab, and other objects,
the position of the object could be determined, and shape
reconstruction was achieved. To improve the imaging resolu-
tion, Divitt et al. used dual-spectrum and phase retrieval meth-
ods to achieve speckle imaging of targets in NLOS scenes in
the mid-wave infrared (MWIR) range "”!. This method does
not require an external light source and achieves higher resolu-
tion imaging than longer wavelengths at the same aperture.
In addition, for media that visible light cannot penetrate but
MWIR can, the hidden target can still be imaged, as shown
in Figs. 32(d)-32(g).

In 2020, Wu et al."™ proposed solutions in both hardware
and software to realize remote NLOS imaging. A fully inte-
grated InGaAs/InP negative feedback SPAD was developed.
A telescope with high coating efficiency and a single-photon
detector with a large photosensitive surface were used to de-
velop an efficient optical receiver to improve collection effi-
ciency. The confocal system uses a binocular optical design
to improve the SNR. Finally, a forward model and a custom
deconvolution algorithm are derived, which includes the effects
of space-time broadening over long periods of time. The result
was NLOS imaging and tracking in the centimeter resolution
range of 1.43 km.

The strong specular reflectance ratio and penetrating ability
of the infrared allow this technology to realize target informa-
tion interpretation when visible light information cannot be ob-
tained. Using blackbody radiation, the target object can also be
regarded as self-luminous, which opens a new direction for
NLOS imaging technology.

In this section, we analyzed the scattering of light in a
medium from the point of view of calculating the medium
parameters. Various technological breakthroughs in recovering
target information were described from the perspectives of sepa-
rating and using scattered light. In the same experimental envi-
ronments, the method of imaging by separating scattered light
has higher experimental requirements and greater limitations,
and breakthroughs are difficult to achieve. Although the
methods using scattered light are simple and widely used,
most of them require prior information for calibration. NLOS
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Fig. 30 In (a)""*, (ay) is the example scenario, (a,) shows the recovered light fields for a simulated
scene and different occluders, and (as) is the recovered light field of another simulated scene.
In (b)"", (b4) is the experimental setup for computational periscopy, (b,) is the reconstruction
procedure, and (bs) shows the reconstructions of different hidden scenes. In (c)'"", (c4) is the
model of the scenario, and (c») shows the still frames from reconstructed videos under a variety
of different experimental settings.

imaging technology is divided into active and passive NLOS
imaging. To circumvent the limitations of traditional imaging
methods, multidimensional physical information such as
phase, polarization, and infrared wavelengths are introduced,
based on intensity information, to analyze and interpret the tar-
get information carried in the light source and realize passive
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NLOS imaging. The imaging process of active NLOS imaging
technology is more complicated because natural light is
weaker than the background light and background noise is
significant. This renders technical breakthroughs and further de-
velopment difficult. Therefore, it remains challenging to make
any breakthrough in the application of scattered-light-based
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computational light field restoration technology to active NLOS
imaging technology.

4.3. Computational optical systems

New optical system design based on computational imaging in-
volves systematically integrating the concept of full-link global
optimization to describe the imaging process. This approach al-
lows the correction of optical aberrations traditionally addressed
during the imaging process to be shifted to other stages. The use
of metalenses in optical systems meets the demands for minia-
turization and integration. Wide-field optical systems break
the conventional trade-off between wide FOVs and high reso-
lution, with progress toward achieving them simultaneously,
introducing coded apertures enhances information collection
and enabling super-resolution and high-speed imaging. With ad-
vancements in the computational performance of electronic
chips, employing an end-to-end design method maximizes
the roles of optical system design and algorithmic correction,
organically combining the two to distribute the pressure of op-
tical aberration correction to the image restoration process. This
achieves high-quality imaging while reducing hardware com-
plexity and precision constraints, leading to minimalist optical
system imaging. Computational field-adaptive optical systems
aim to hierarchically eliminate the dual interference of complex
environments on the amplitude and phase of imaging fields
through computational imaging-related processing methods.
Single-pixel imaging surpasses traditional imaging technologies
in detector requirements, offering advantages such as a high
SNR, wide spectral range, low cost, and higher detection effi-
ciency. There are significant application prospects across
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various research areas, including multi-level depth imaging,
3D information modeling, obstacle imaging, full-field multi-
view wavefront detection, and multi-level depth phase recovery
(Fig. 33).

4.3.1. Metalenses

A metasurface is a planar 2D metamaterial that is different from
traditional optical elements. By designing the structure and
arrangement of meta-atoms appropriately, metasurfaces can
flexibly control optical field parameters within a 2D plane, pos-
sessing superior optical field manipulation capabilities beyond
traditional components.

Lenses made from metasurfaces that focus light are called
metalenses. Metalenses offer advantages such as thinner vol-
umes, lighter weight, lower cost, better imaging, and easier in-
tegration. Introducing metalenses into optical systems can meet
the demands for miniaturization and integration. Moreover, by
adjusting parameters such as the shape, orientation, and height
of the structure, control over properties of light such as polari-
zation, phase, and amplitude can be achieved.

There are three basic phase control methods for metalenses:

* Resonant phase control

* Propagation phase control

* Geometric phase control (also known as Pancharatnam—
Berry phase control).

(1) Resonant phase control achieves phase discontinuities by
altering the resonant frequency, which is controlled by the geo-
metric shape of nanostructures. However, resonant phase meta-
surfaces, typically made of metals like gold, silver, or aluminum,
inevitably suffer from ohmic losses, making it challenging to

2024 * Vol. 1(1)



Liu et al.: Future-proof imaging: eomputational imaging

(@ ~ ©
- 1@,%5) Camera
iy
Camera \\ 5, s
Wall
(b)

(@) Raw F: T (¢) 2D reconstructions for diffcrent depths
a) Raw Frame

®

(b) Med Filter (c) TV Reg

(a)

-800

position (mm)
°

I
8

(),

Z08
5

position (pm)
o

g
§00
204

£02

0 4
position (pm)

Fig. 32 (a) Corner setup. (b) Comparing HOG features in

(a) Comer setup / (Object 25.4cm away from wall) ( )
(e
,’1/

o (8

(d)

spatially incoherent
light emission

source object

(b) Measurement

0.18 —— Estimated Radiance |
Expactod Radlance from

§ | Trempentuwreror | A/ incident MWIR
Sours y, laser light
3 N _
B oy Qe g
o g
¥ N ®
0.169 I | Estimated S
- i/ depth g
! g

016 = .
10 15 20 25 30 35 40
Depth of 20 Reconstruciton (cm)
(d) LWIR radiance estimation
for each 2D reconstruction

shutter

array detector

| (a) line-of-sight i (b) non-line-of-sight

°
&

position (mm)

o
[
(spun "wuou) Aysuajur
°
o

]

spatial frequency (1/mm)

10
10 -10 0 10

the raw frames and the denoised

frames. (c) Reconstruction algorithm for 2D shape recovery and 3D localization. (d) A general
diagram of the experiments. (e) A schematic diagram of the speckle correlation imaging setup
with a monochromatic, pseudothermal source object in an around-the-corner geometry.
(f) Image recovery under the pseudothermal setup. (g) A comparison of results under line-of-sight

and NLOS conditions using the setup!'*'7,

achieve efficient optical field manipulation. This issue can be ef-
fectively addressed using metasurface lenses made from low-loss
dielectric materials. In 2018, Hsiao et al. optimized integrated
resonant units in metalenses, constructing a multifunctional
polarization converter, as shown in Fig. 34(a)!'”"\. Through experi-
ments, they demonstrated that achromatic metalenses with differ-
ent numerical apertures exhibit consistent focal lengths within the
visible light bandwidth. Furthermore, these metalenses showed
high focusing efficiency, significantly enhancing the conversion
efficiency from visible to near-infrared light.

(2) Propagation phase control arises from the optical path
difference that occurs as electromagnetic waves propagate.
This characteristic enables the manipulation of phase. Phase
modulation (¢) is adjusted by the optical path difference, where
A represents the wavelength, 7 is the effective refractive index of
the medium, and d is the distance over which the electromag-
netic wave propagates in the uniform medium (the height of
the structure). With ky = 2z/2 as the free-space wave vector,
the accumulated propagation phase of the electromagnetic wave
can be expressed as

0 = nkyd.
When the height of micro—nanostructures is fixed, metasur-

faces designed based on the principle of propagation phase
modulation can be adjusted through the shape, size, and
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periodicity of the structures. These metasurfaces typically con-
sist of isotropic micro—nanostructures, characterized by highly
symmetric features. Consequently, they exhibit polarization in-
sensitivity, meaning that the phase response of the structures is
independent of the polarization type of the incident light, mak-
ing them suitable for most applications. In 2015, researchers
at the Harvard John A. Paulson School of Engineering and
Applied Sciences utilized dielectric ridge waveguides as phase-
shifting elements in metasurfaces ™. They achieved the desired
phase accumulation through propagation over subwavelength
distances, realizing high-resolution metagratings with broad-
band and efficient routing (splitting and bending) to a single
diffraction order, overcoming the limitations of conventional
gratings. Additionally, as shown in Fig. 34(b), they demon-
strated polarization beam splitting capabilities with high sup-
pression ratios.

(3) Geometric phase modulation involves adjusting the rota-
tion angle of micro—nanostructures with identical dimensions to
achieve phase discontinuities in light waves, thereby enabling
artificial control over phase gradients or distributions. This
significantly reduces the complexity of designing and fabricat-
ing metasurfaces. One of the advantages of geometric phase
modulation is that it is unaffected by material dispersion, struc-
tural dimensions, or structural resonances. In 2021, Jisha et al.
highlighted that the geometric phase is a unified core concept
in physics (including optics) and demonstrated how to utilize
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Fig. 33 General framework for computing optical systems. (a) Metalens. The use of metalenses
can meet the needs of miniaturization and integration of optical systems®®?. (b) Simplified optical
system. The simplified optical system seeks to achieve optimal performance of the entire
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219, (e) Single pixel imaging. Only a single pixel detector is used for spatial imaging. The advan-
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geometric phase to generate a novel type of waveguide with-
out requiring any refractive index gradients, as shown in
Fig. 34(c)"™!. Leveraging the sensitivity of circular polarization
to geometric phase, Shalaev et al. proposed using the photonic
spin Hall effect for hand-shaped optical polarization and spec-
tral analysis on plasmonic metasurfaces*”. When left-handed
circularly polarized (LCP) and right-handed circularly polarized
(RCP) light are incident, opposite geometric phase characteris-
tics are produced, resulting in additional phase gradients on the
reflecting surface. This allows LCP and RCP light to be re-
flected at symmetrical angles. By measuring the two reflection
angles and the intensity of the reflected light, spectral compo-
nents and polarization information of the reflected light can
be obtained. Using the same theory, Gao et al. achieved high
mode purity and background-free vortex beam generation*".
Orthogonal circularly polarized light generates vortex beams
with opposite topological charges at symmetrical positions.
Addressing chromatic aberration in metalenses, Capasso pro-
posed compensating for lens dispersion using resonant mode
coupling in dielectric gratings'®”, thereby achieving broadband
achromatic focusing. This study offered a new approach to ach-
romatic metalens implementation. Subsequently, Chen er al.
realized achromatic transmission metalenses with a large
bandwidth by rationally designing nano-fins on the surface
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while controlling the phase, group delay!®!, and group delay
dispersion of light. Lin et al. proposed a metalens array made
of gallium nitride (GaN) nanoantennas'®. This full-color, ach-
romatic optical field camera finds applications in various fields
such as robotics, autonomous vehicles, and virtual and aug-
mented reality. Kivshar et al. controlled the mode intensity
of dielectric scatterers to construct a low-reflection-loss
Huygens metasurface®. This enabled efficient grayscale
holography in the near-infrared spectrum, further enhancing
the efficiency of metasurfaces. Research on these new phenom-
ena and applications of metasurface beam manipulation demon-
strate the rich mechanisms and applications of metasurfaces at
subwavelength scales, further advancing the development of in-
tegrated micro—nano-optical devices.

Currently, metalenses have tremendous prospects in numer-
ous areas of modern optical imaging. In 2022, Jian et al. from
Tsinghua University designed a real-time hyperspectral im-
aging chip based on reconfigurable metasurfaces'*". As shown
in Fig. 35(a), the chip contains 150,000 micro-spectrometers.
In the process of spectral reconstruction of an object, adjacent
metasurface units in the metasurface superunit dynamically
combine to form a reconfigurable and image-adaptive micro-
spectrometer, with ultra-high center wavelength accuracy and
spectral resolution. Figure 35(b) shows a schematic diagram
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Fig. 34 Three basic phase control methods of metalenses. (a) Resonance phase control"”,
(b) Propagation phase control'’®. (c) Geometric phase control!'”.

of the basic modulation unit of the chip, including the metasur-
face, microlens (for increased quantum efficiency), and CMOS
image sensor. Moreover, they seamlessly integrated the recon-
figurable metasurface superunits with a commercial camera to
avoid system incompatibility issues and achieve real-time

Fig. 35 The operational status of the hyperspectral imaging
device!™®., (a) Schematic diagram of the structure of the device.
(b) Schematic diagram of the basic modulation unit, including,
from top to bottom, the metasurface, microlens (used to increase
quantum efficiency), and CMOS image sensor. (c) Snapshot
of spectral imaging. The light from the object to be imaged is in-
cident on the metasurface superunit. (d) Hyperspectral imaging
chip with reconfigurable metasurface superunits placed on top
of the camera.
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dynamic spectral measurements in all optical imaging systems,
as shown in Fig. 35(d). In 2024, Aun et al. discovered the
potential application of metasurfaces in the field of polariza-
tion detection. They utilized metasurfaces to create a compact
Mueller matrix imaging system, consisting of a metasurface
for generating structured polarized illumination and another for
polarization analysis. This system can capture all 16 compo-
nents of the Mueller matrix for spatial variation of an object in
a single shot. The optical path diagram for this compact Mueller
matrix imaging system and the Mueller matrix information ob-
tained from single reflection imaging are shown in Fig. 36"*7),
This work’s proposal holds the greatest practicality in applica-
tions requiring compact and single-shot polarization imaging
and holds potential for development in fields such as food, phar-
maceuticals, biomedical imaging, nanoscale structure charac-
terization, and fundamental scientific research.

In summary, the introduction of metalenses not only meets
the demands for miniaturization and integration in optical sys-
tems but also enables flexible control of the optical field phase,
effectively overcoming the effects of material dispersion, struc-
tural dimensions, and other factors. Thus, metalenses have tre-
mendous prospects in the field of advanced optical imaging
technologies including integrated micro—nano-optical devices,
hyperspectral imaging, and polarization detection. However,
as metalenses are diffractive lenses, the issue of wide spectral
bandwidth remains to be addressed. Additionally, the high
difficulty in precisely aligning nanoscale components on centi-
meter-scale chips leads to high manufacturing costs for metal-
enses. Moreover, metalenses typically have micron-scale
dimensions, limiting their ability to capture a large amount
of light and resulting in relatively low transmittance efficiency.
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Fig. 36 Mueller matrix imaging reflection results"®". (a) Imaging of the Mueller matrix placed in the
“Fourier plane” using a 4fimaging system, conjugated with two metasurfaces. Metasurface 1 gen-
erates structured polarized light illuminating the object, while metasurface 2 diffracts and analyzes
the resulting field imaged onto the CMOS sensor. The aperture is placed in the Fourier domain to
limit the FOV, and the zero-order block is placed to prevent sensor saturation. (b) Chrysina glo-
riosa, commonly known as the “chirality beetle,” illuminated by right-circularly polarized (RCP) and
left-circularly polarized (LCP) lights and imaged with a standard digital camera. (c) Original image
of the chiral beetle captured using the compact Mueller matrix imaging system. (d) Full Stokes
image derived from the original image. (e) Mueller matrix image obtained from full Stokes image
using a no-reference method (demodulation and normalization).

Therefore, there is still a long way to go before metalenses can Compared with traditional imaging, computational imaging

generate high-quality images. technology combines the efficient processing performance
] ) of computers with optical systems to achieve wide-area
4.3.2. Wide-area optical system high-resolution imaging. Currently, numerous computational

In traditional imaging, optical systems cannot simultaneously optical imaging systems, including drone monitoring, remote
meet the demands for wide-FOV and high-resolution imaging  sensing mapping, machine vision, biomedicine, and intelligent
because, for a single optical system, wide FOV, and high res- monitoring, have been widely used. Moreover, ultra-high pixel
olution are mutually constraining. If the FOV increases, the fo-  jmaging with a large FOV can be achieved using the following

zal length of lth‘? optical system decrealies(.l Consequ.entlbs ifthe  gystems: single-lens scanning, multi-scale imaging, multi-detec-
etector pixel size remains constant, the detector pixel density o ok ino “and multi-lens splicing systems,

decreases, reducing system resolution. Conversely, if resolution

is increased, the FOV needs to be reduced. (1) The single-lens scanning system usually installs a single
The emergence of computational imaging technologies has high-resolution camera on a pan/tilt, controls the pan/tilt to
resulted in high-performance imaging of optical systems. change the imaging area of the high-resolution camera, and uses
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image stitching technology to stitch together multiple captured
images to obtain a large FOV and high resolution. In 2007, Kopf
et al. used a single lens reflex (SLR) lens to scan and stitch im-
ages, thereby obtaining a wide-area high-resolution billion-pixel
image'®, as shown in Fig. 37(a). However, relying on the au-
tomatic exposure mode of the camera for each shot, the DOF
provided by a long lens is extremely shallow and consequently
not suitable for scenes with both near and distant objects.
However, using a single lens to rotate requires a long shoot time,
and a certain time delay occurs in post-image stitching, limiting
the application scope of this technology. Generally, this imaging
method is only suitable for wide-area high-resolution imaging in
static or quasi-static scenes and is not suitable for dynamic
scenes or high-frame-rate video imaging.

(2) The multi-scale imaging system collects light energy
through a large-scale main optical system and performs transfer
imaging through multi-level small-scale optical systems. The
large-scale main optical system and multiple small-scale opti-
cal systems are cascaded and combined with image stitching
technology to achieve a wide area, which is a method of high-
resolution imaging. Xidian University has conducted exten-
sive research in multi-scale imaging. In 2019, Liu et al."® de-
veloped a prototype of a multi-scale, wide-field, high-resolution
computational optical imaging system using co-centric spherical
lenses, as shown in Fig. 37(b). The main imaging system com-
prises a 113.8-mm-diameter four-laminated spherical lens, and
the secondary imaging system comprises six sets of nine-piece
double-Gaussian structures with a length of 62 mm. The total
system length is 295 mm, with an F-number of 3.3 and a focal
length of 47 mm. The single-lens small camera has a full FOV of
8°. A total of 399 small cameras are arranged in a hexagonal
pattern on the first image plane of the primary imaging system.
Combined with post-image stitching technology, the system
achieves wide-field, high-resolution imaging with an imaging
field of 120° x 90° and a resolution of 5 cm x 5 km, totaling
up to 3.2 billion pixels. This imaging system effectively realizes
the engineering application of co-centric multi-scale systems,
enabling high-definition, distortion-free imaging of targets
within O to 5 km, with good real-time imaging effects and high
adaptability. In 2018, Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, supervised by

Shen et al., developed a distributed multi-focal length multi-
scale imaging system'*”, which has the advantages of low dis-
tortion across the entire FOV and high imaging quality.
Moreover, the resolution decrease across the entire FOV is ap-
proximately 50% less than that of traditional design schemes.
Currently, numerous research achievements on multi-scale
imaging systems have been reported. The use of large-scale pri-
mary optical systems for collecting light energy and conducting
initial aberration correction and the combination of small-scale
secondary optical systems for imaging on detectors can effec-
tively address the contradiction in traditional imaging where
large FOV and high resolution cannot be achieved simultane-
ously. This approach is effective for achieving wide-field, high-
resolution imaging. However, the size and complexity of secon-
dary optical systems mainly depend on the type and magnitude
of aberrations that need to be corrected. In the design process of
secondary imaging of optical systems, balancing information
capacity and lens complexity is challenging.

(3) The multi-detector splicing system splits the internal im-
age plane of the optical system, projects light onto the photo-
sensitive surfaces of each detector, and finally uses digital image
processing algorithms to obtain the entire spliced image, thus
achieving wide-area imaging. UltraCam-D (UCD) is an array
aerial camera introduced by the Australian company Vexcel
in 2003. It comprises eight independent cameras, including four
panchromatic and four multispectral cameras'®". The latter cor-
responds to the red, green, blue, and infrared bands, with a focal
length of only 28 mm, covering the FOV of the panchromatic
cameras. The former, used to capture black and white images,
employs a multi-detector stitching method—the panchromatic
band stitching scheme, as shown in Fig. 38(al). The four pan-
chromatic cameras are arranged in parallel, with 4, 2, 2, and 1
detectors placed on the focal plane for image acquisition,
achieving a 3 x 3 array imaging. Compared with traditional
detector stitching methods, the method of placing adjacent
detectors under different cameras effectively eliminates inter-
ference between detector pins. The Kepler telescope is an im-
aging system designed by the National Aeronautics and Space
Administration (NASA) for searching exoplanets orbiting Sun-
like stars"**'”*. The optical system of this telescope mainly
comprises a spherical primary mirror, Schmidt corrector

Fig. 37 Wide-field optical
MeadelL X200 stent and its imaging effects!"®®. (b) Multi-scale computational optical imaging
system and imaging renderings!'®%,
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(a) Single-lens scanning imaging system.
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Fig. 38 Wide-field optical imaging method. (a) Multi-detector splicing system!'®"192%4 (a1)
UltraCam-D(UCD) camera detector splicing scheme. (a2) Complete focal plane array assembly
of the Kepler telescope. (a3) ARGUS-IS imaging system. (a4) Full FOV image. (b) Multi-aperture

imaging system prototype and imaging effect!"®,

plate, and focal plane array (FPAA) component, as shown in
Fig. 38(a2). The FPAA comprises 21 modules with a total of
42 CCD detectors. These systems employ a seamed stitching
method. Similarly, seamless stitching is a stitching method.
The Defense Advanced Research Projects Agency and BAE
Systems plc developed an autonomous real-time ground ubiqui-
tous surveillance-imaging system (ARGUS-IS)"*, as shown
in Fig. 38(a3). This system, equipped with an 18-billion-pixel
airborne pod, achieves wide-field, high-resolution Earth obser-
vation. As shown in Fig. 38(a4), using image stitching technol-
ogy, sub-images are seamlessly stitched to form a full-frame
image with sufficient clarity to identify and track vehicles
and pedestrians from a high altitude of 6500 m. However, this
technology has the phenomenon of missing seams in detector
splicing, consequently decreasing image quality. In addition,
the optical system is bulky and expensive, affecting the practical
application of this technology.

(4) The multi-lens splicing system arranges multiple small
cameras following specific rules and combines post-processing
computational imaging technology to obtain wide-area high-
resolution images. Unlike multi-detector splicing, multi-lens
splicing imaging is image field splicing. By splitting the image
plane of the optical system and transmitting it to the photosensi-
tive surface of multiple imaging devices, image splicing technol-
ogy is used to achieve a large FOV and high-resolution imaging.
Multi-lens splicing imaging is an object-side FOV splicing. By
dividing the object-side FOV into multiple sub-fields of view
and imaging them separately, image stitching technology is used
to achieve wide-area high-resolution imaging. The Swiss
Federal Institute of Technology in Lausanne has made signifi-
cant progress in multi-lens panoramic imaging. In 2012, they
introduced a multi-camera system inspired by the vision system
of flying insects, known as the Panoptic Camera'®”. Building
upon the Panoptic Camera in 2013, they proposed a super-
high-resolution light field imaging and recording system using
panoramic methods". The system can record omni-directional
videos at a speed of 30 frame/s with a resolution exceeding 9000
pixel x 2400 pixel. It can capture the surrounding light field

Advanced Imaging

012001-42

within the FOV, creating rooms for various post-processing
techniques such as quality-enhanced 3D cinematography,
super-resolution depth map estimation, and applications requir-
ing beyond-standard stitching and panorama generation with
high dynamic range (HDR). In 2017, they introduced a minia-
turized high-definition vision system inspired by insect eyes,
matching the size and resolution of natural counterparts'®”,
Using distributed illumination methods, this system can operate
in dark environments, suitable for endoscopic and adjacent im-
aging applications. In 2021, they proposed a hybrid synthetic
imaging system combining the advantages of fisheye and
compound eyes. It uses a single spherical lens as the objective,
followed by a series of miniature cameras, enabling high-
resolution imaging under wide FOV. Shao et al. from Xidian
University designed a multi-aperture imaging system!”®, as
shown in Fig. 38(b). The total FOV of the system is
123.5° x 38.5°, with over 100 million pixels. It enables real-time
global viewing of images and videos, supporting functions such
as viewing and exporting local detail information. However,
because multiple lenses are used, the entire system has a large
volume and mass.

In summary, wide-field, high-resolution computational opti-
cal imaging systems are essential in areas such as aerial recon-
naissance, ecological monitoring, and support for social
activities owing to their broad imaging range and high imaging
performance. However, the limitations of the aforementioned
four imaging technologies represent key issues that computa-
tional optical imaging systems need to address in the future.

4.3.3. Coded aperture

From the perspective of computational optics, computational
optics can be considered an optical imaging method that in-
volves encoding information. Regarding the imaging chain, en-
coding can be introduced at almost any position in the chain.
Typical methods include encoded illumination (structured light,
self-healing beams, and Fourier ptychographic imaging), en-
coded media (water and atmosphere), encoded optical elements
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(coded apertures, coded shutters, and coded phase plates), and
encoded detectors (polarization detectors and spectral detec-
tors). By organically introducing physical optical information
using geometric optical imaging and information transmission
as a guideline, higher-dimensional information can be obtained
through information interpretation.

The introduction of coded apertures was aimed at increasing
the optical throughput of optical systems without reducing res-
olution. In the mid-1950s, the French scientist Gilbert Malusi
first proposed the coded aperture technique. The key feature
of this technique is adjusting the aperture to change the PSF,
thus encoding the PSF. The coded aperture technique involves
inserting a mask with a specific structure into the traditional
optical aperture, thus addressing the limitations of traditional
imaging systems and achieving high performance. Coded aper-
tures originated in the field of astronomy in the 1960s. In X-ray
and gamma-ray imaging, conventional optical lenses such as
lenses are ineffective for high-energy radiation. Therefore, a
mask should be carved on a material that does not transmit
X-rays and gamma rays to indirectly encode computational im-
aging. Such masks are the origin of coded apertures. In the late
1980s, Tiloitta et al. began to use liquid crystal SLMs as coding
templates and designed a Hadamard transform spectrometer
using a fixed coding template*. The spectrometer provides
a fully solid-state system without moving parts for future spec-
tral analysis. Encoding control of the spatial or temporal domain
of the light field is achieved during the signal acquisition pro-
cess of the imaging system, obtaining encoded compressed
measurement values, and is combined with back-end image
reconstruction algorithms to achieve high-resolution imaging™"”’
and high-speed imaging™"'. Edward et al. designed an optical
digital system using wavefront coding”. By modifying the
phase mask and digitally processing the intermediate image
obtained, the system can provide a large DOF near-diffraction-
limited imaging performance. In 2004, Dowski and Cathey from
the University of Colorado introduced a wavefront coding
optical element, termed the phase mask™™?, into optical imaging
systems. By placing an odd-symmetry phase mask at the

aperture of the optical system, light rays on the image plane
do not converge to a point but become uniform thin beams
within a certain defocus range, rendering the system insensitive
to defocus and achieving extended DOF. The schematic of the
system is shown in Fig. 39(c). The challenge of wavefront cod-
ing technology is designing phase masks with complex surface
shapes for achieving defocus invariance within a certain range.

In 2006, Professor Ramesh Raskar from the Massachusetts
Institute of Technology (MIT) introduced coded apertures into
the field of computational imaging to address the challenge of
achieving extended DOF™, Additionally, he used a coded ex-
posure in a temporal domain, combined with PSF estimation
and image deconvolution, to address motion blur. The key idea
of coded exposure is to sample motion in time while minimizing
spatial frequency loss. As shown in Fig. 39(b), conventional ex-
posure leads to motion blur, resulting in the loss of high spatial
frequencies. However, coded exposure retains these frequencies.
The effectiveness of coded exposure is evident from the recov-
ered results.

The essence of computational imaging lies in the manipula-
tion of the light field, with encoding significantly essential in
achieving optimal results. Encoding fundamentally involves
modulating the light field through various means to enhance cer-
tain mathematical characteristics in specific projection dimen-
sions. Within the light field dimensions, spectral information
contains essential details about object composition, structure,
and material properties, rendering it invaluable in applications
such as aerospace remote sensing, medical diagnostics, and
machine vision. Traditional spectral imaging techniques typi-
cally employ scanning along spatial or spectral dimensions to
sequentially acquire spectral information from the surface of
the target object. However, because of long exposure times, tra-
ditional spectral imaging methods are unsuitable for capturing
dynamic scenes. In 2007, the research team of Professor David
Brady at Duke University introduced a novel linear imaging
system that revolutionized this approach. The hardware setup
includes an objective lens with an encoded aperture, a relay lens,
filters, a dispersive prism, and a monochrome camera, as shown
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Fig. 39 (a) Coded aperture mask used in gamma-ray imaging. (b) Comparison of traditional sam-
pling and coded exposure sampling®*¥. (c) Wavefront coding imaging system?'%. (d) Schematic
diagram of the coded aperture snapshot spectral imaging (CASSI) physical system?®.
(e) Schematic diagram of the CASSI imaging process?®!,
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in Fig. 39(d)™™'. This system, known as coded aperture snapshot
spectral imaging (CASSI), enables the acquisition of complete
spectral images in a single exposure, as shown in Fig. 39(e).
This capability offers a significant advantage in rapidly captur-
ing spectral information from dynamic scenes. In 2013, re-
searchers at the University of Delaware in the United States
used a DMD as the spatially varying coded aperture and em-
ployed a prism as the dispersing element to develop a CASSI
system™, Their research focused on the use of compressive
sensing algorithms to reconstruct spectral images and proposed
a high-order computational model to improve reconstruction
quality. In 2014, Gonzalo et al. also developed a compressed
coded aperture spectral imaging device, thus addressing the lim-
itations of traditional spectrometers, which require proportional
scanning of multiple regions™”. To its uniqueness, the device
requires only a few FPAA measurements to sense the entire data
cube, and in some cases, only one FPAA measurement is re-
quired. Yuan et al.”™ and Wang et al.”™ proposed a hybrid
dual-camera system consisting of CASSI and an RGB camera.
By fusing the scene coding information obtained from the
CASSI branch and the color information acquired from the
RGB branch, they achieved high-fidelity image reconstruction.
Encoded aperture compressed spectral imaging benefits from
using simple optical sensing elements to control compressed
projections, yielding remarkable efficiency, thus holding prom-
ising prospects in many applications in remote sensing and sur-
veillance fields. Its strength lies in the combination of optics
with excellent encoded apertures and computational imaging
theory. Although CASSI spectral imagers naturally embody the
coherence of these domains, new spectral imagers and numer-
ous versatile multidimensional imaging sensors are being
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discovered by utilizing advanced optics and photonics devices
as sensor elements. The potential of coded aperture optimization
and optical sensing in multimodal and multidimensional imag-
ing shows great potential for the near future, providing a basis
for signal processing exploration.

4.3.4. Minimalist optical system

Minimalist optical systems have smaller volume and mass,
lower system complexity, reduced assembly difficulty, and
higher energy transmittance than traditional optical systems
comprising multiple optical lenses. These advantages are con-
ducive to shortening the manufacturing steps of optical lenses.

The concept of single-lens computational imaging was first
proposed by Heide et al. in 2013. They used a camera contain-
ing only a single glass component to capture images and em-
ployed a series of computational imaging techniques on the
back-end to eliminate the effects of optical system aberrations,
thus simplifying the front-end optical system to render it light
and cost-effective™™!. The imaging effect is shown in Fig. 40(a).
Building on the proposed single-lens computational imaging,
many studies have investigated how to achieve high-quality im-
aging using a single lens. In 2015, Li et al. improved single-lens
imaging using a single lens instead of complex lenses to capture
images and employing computational photography techniques
to eliminate corresponding imaging artifacts, thereby enhancing
the deblurring quality of single-lens imaging™'?. In 2017, they
further combined single-lens optical devices with complex
capture-and-correction methods based on computational pho-
tography™"?'. This research further improved lens design by cor-
recting chromatic aberration, and simple image deconvolution

l CON MuAS I
—

e

(C)

| 1Source

(i
20bject

e
>

°
S

Normalized intensity

-10 -5 o 5 10 o 50 100 150
Coordinate/um Spatial frequency (Ip/mm)

Fig. 40 (a) Single-lens camera input image and deblurring results®'". (b) Joint end-to-end opti-
mization of the optical design framework®, (c) Diagram of the principle of the diffractive telescope
imaging system experimental platform and comparison of the results with and without the image
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methods
thereafter.

The global optimization of optical systems and image
processing have been extensively investigated. In 2006,
Robinson ef al. from Ricoh Innovations in Japan made a
new attempt at optical-digital co-design methods™'*. They per-
formed algorithmic restoration of blurred images during optical
system design, calculated the root mean square error between
the restored and blurred images at each pixel, and used this as
an evaluation metric to iteratively optimize the optical system.
This method was validated via the simulation of a single-lens
system and compared with single-lens and double-lens systems
designed using traditional optical or digital sequential methods.
The design framework is shown in Fig. 40(b), indicating that
joint design improves image restoration and simplifies the op-
tical system. In 2008, Mirani et al. proposed a similar approach
of jointly designing optical systems and image restoration in
computational imaging'®'*. They established the optical system
transfer function and image processing transfer system and used
the mean square error between the reconstructed and original
target scene images as a performance metric for optimization,
thereby achieving end-to-end optimization. This method consid-
ers the optical transfer function as a special filtering function
in mathematics from the perspective of image restoration.
However, it did not extensively investigate the effects of optical
aberrations, and the consideration of optical aberrations in mod-
eling the physical process into a mathematical model during
computational imaging was insufficient. Dowski and Cathey
pioneered a new imaging method termed wavefront encoding,
which utilizes freeform optics and signal processing to reduce
system complexity and provide high-quality images™®*'",
Robinson and Stork introduced a novel framework for designing
digital imaging systems, particularly based on an end-to-end
evaluation function using pixel mean square error”'®!, Building
upon these methods, in 2018, researchers including Xiaopeng
Shao from Xidian University proposed a new holistic optimiza-
tion design model termed SWaP (Size, Weight & Power/Price)
from optical system to image processing”'”. The optical SWaP
computational imaging method can address the limitations of
traditional optical imaging, significantly reducing the size,
weight, power consumption, and cost of military electro-
optical systems. This method can be widely applied in areas
such as wide-area surveillance and alarm systems, airborne
electro-optical equipment, ground-based early warning systems,
and high-resolution Earth observation systems. In 2019, Yang
et al. utilized the concept of global optimization in computa-
tional imaging and employed the adaptive Wiener filtering al-
gorithm to perform image deconvolution on practical diffractive
telescope imaging systems, effectively improving the imaging
quality of simple optical systems™”. The diffraction telescope
imaging system is shown in Fig. 40(c).

In the end-to-end design process of ultra-compact optical
imaging systems, neural networks are employed to optimize
the system parameters. Feature PSFs are extracted using these
optical system parameters. The imaging degradation caused by
the PSF and the correction capability of the algorithm are com-
puted, with the final image quality after correction serving as the
evaluation metric. This iterative process enables the derivation
of optimal parameters for the optical system, achieving high-
quality imaging in ultra-compact optical imaging systems.
With the increasing demand for miniaturization and lightweight
optical systems, novel optical system design technologies based

could effectively produce high-quality images
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on computational imaging theory offer lower processing diffi-
culty, shorter manufacturing cycles, and lower manufacturing
costs while maintaining imaging clarity than traditional optical
systems. Using these technologies, the weight of optical sys-
tems is significantly reduced compared with those of traditional
optical systems, offering promising development prospects.
In 2020, Metzler proposed an end-to-end method that jointly
optimized diffractive optical elements (DOEs) and neural net-
works to achieve single-shot HDR imaging'. Moreover, in
the same year, Dun er al. proposed a snapshot HDR imaging
method that uses DOEs to map saturated highlights to adjacent
unsaturated areas by learning HDR coding in a single image™*,
They introduced a novel DOE Rank-1 parameterization, signifi-
cantly reducing the optical search space while effectively encod-
ing high-frequency details. Further, they proposed a customized
reconstruction network tailored to this 1-level parameterization
to recover clipped information from the encoded measurements.
The proposed end-to-end framework was validated through sim-
ulation and actual experiments, achieving a peak signal-to-noise
ratio (PSNR) improvement of over 7 dB compared with those
of state-of-the-art end-to-end designs. In 2023, Wei Shijie from
Xidian University proposed an optimized encoding method for
phase plates using the framework of deep learning, reducing the
requirements for full-field aberration correction™'. As shown in
Fig. 41, compared with traditional Cooke triplet and doublet
lens systems, these aberrations, together with the encoding
mask, form an optical encoding combination that can be digi-
tally decoded, reducing the optical complexity of traditional
systems. Results indicate that this method ultimately obtains im-
ages with the best resolution, and the DOF of the system is in-
creased by 13 times, which is significant for the high-precision
detection and attachment of machine vision small parts.

At this stage, minimalist optical systems have achieved many
results. The optical system structure can be simplified through
optical joint design, and simple surface shapes can be used to
achieve optical parameters that are convenient for image
processing. The optical-image joint design method uses the
idea of global optimization, and the automatic iteration of joint
optimization can achieve appropriate and complementary aber-
ration correction. However, minimalist optical systems also
have multiple limitations:

(1) Poor environmental adaptability: Only an accurate
imaging model can reflect the location, shape, size, and other
information of the target, but the accuracy of the model is sig-
nificantly affected by environmental information.

(2) The algorithm requires a priori and pre-training. To en-
sure the correctness and effectiveness of the algorithm, assump-
tions or preprocessing need to be made on the premise of the
algorithm, and the preparation is difficult.

(3) The real-time performance of imaging needs to be im-
proved. Data processing, analysis, and image reconstruction
are time-consuming, and complex algorithms and large-scale
data increase processing time.

4.3.5. Adaptive optics system

To address the influence of complex channels on optical imag-
ing, adaptive optics (AO) technology is usually adopted to de-
tect and compensate for random interference in the environment,
thus obtaining optical imaging with near-diffraction-limit reso-
Iution. AO technology is high-tech and integrates modern op-
tics, optoelectronics, computers, automatic control, functional
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ent systems within the defocus range.

materials, and precision machinery, focusing on the study of
wavefront aberration. It primarily measures and corrects wave-
front aberration in real time'”!. The adaptive optical imaging
system mainly comprises three parts: wavefront detection,
wavefront control, and wavefront correction. It uses wavefront
detection devices to measure wavefront dynamic aberration in
real time and uses a fast electronic system for control calcula-
tions. Then, it uses wavefront correction devices to correct
wavefront aberration in real-time, thus enabling the optical
system to automatically adapt to changes in the external envi-
ronment and address the impact of dynamic disturbances,
maintaining the system in good working conditions. Finally,
high-resolution light-intensity recording devices are used to
record and image objects.

To address the interference of atmospheric turbulence and
observe the true appearance of stars from the ground, in the
1950s, the astronomer Horace Bobcock proposed a method that
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uses a sensor to measure the wavefront distortion in the light
beam and then compensate for the wavefront distortion using
a deformable optical element to restore the original wavefront
of the light beam, thus eliminating the influence of atmospheric
turbulence and improving image clarity®'. This marked the
era of AO. This idea clarified the traditional belief that higher
resolution can only be obtained by improving the manufacturing
accuracy of optical instruments, enabling optical systems to
actively adapt to external error changes and maintain a high
resolution of the imaging system. However, because of the tech-
nological limitations of the time, this idea could not be imple-
mented in engineering. Until 1972, Itek Corporation in the
United States developed a deformable mirror and an interference
wavefront sensor and, based on these, built the world’s first
adaptive optical system, which can effectively correct aberra-
tions introduced by atmospheric turbulence™®. In 2013, Wu
et al. investigated the transmission of light beams using a dual
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adaptive optical system in a turbulent atmosphere'**”’. They es-
tablished a typical model of the dual adaptive optical system and
analyzed the working principle of the system and theory of
beam propagation using the optical system in a turbulent atmos-
phere. They introduced the power efficiency of the received
beam and beam quality to evaluate the performance of the op-
tical system. To eliminate the impact of atmospheric dispersion
on astronomical observations using telescopes, in 2023, Gao
et al. leveraged the adaptive optical system and linear fitting
method to conveniently measure atmospheric dispersion from
scientific images and control the atmospheric dispersion correc-
tor (ADC) system for dispersion correction, thereby enabling
the full width at half-maximum of the final image to approach
the diffraction limit of the telescope™®.

In telescopes, light from natural stars or artificial stars pass-
ing through the atmosphere is collected by the telescope,
reflected off a deformable mirror, and illuminated onto a wave-
front sensor, as shown in Fig. 42(a). The wavefront sensor de-
termines pointwise phases of the received wavefront, and then
the information is used to guide the shape of the deformable
mirror to minimize aberrations and achieve the best resolution.
Thanks to AO, the Keck Observatory can resolve stars near the
supermassive black hole Sagittarius A* at the Galactic Center,
and a similar optical geometry can be applied to microscopes.
Unlike telescope systems, it is difficult for isolated self-
luminous objects to naturally occur in biological samples.
Therefore, researchers found that luminous sources can be
generated by exciting fluorescence or backscattered exciting
light. For a wide-field fluorescence microscope that simultane-
ously illuminates an extended volume, it is usually only neces-
sary to correct for aberrations in the emitted fluorescence.
Azucena et al.”* injected fluorescent beads into fruit fly em-
bryos and measured the aberrations of fluorescence passing
through the embryos using a Shack—Hartmann (SH) wavefront
sensor in a wide-field microscope. Jorand et al.'™" integrated
fluorescent beads into 3D multicellular tumor spheroids, cor-
recting aberrations caused by the spheroids in the detection path
of selective plane illumination microscopy. In both examples, a

(a) (b)
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closed loop between the wavefront sensor and the deformable
mirror minimizes the detected wavefront errors, thus improving
image quality, as shown in Figs. 42(b) and 42(c).

The AO system was first used in biological sample imaging,
which uses direct wavefront sensing to measure the aberration
of the human eye with the light reflected back by the retina
as the guide star and then corrects it to achieve high-resolution
retinal imaging™". In 2014, Yang et al. achieved optical stabi-
lization and digital image registration in the adaptive optics
scanning laser ophthalmoscope (AOSLO). Through real-time
digital image registration, residual eye movements after optical
stabilization can be corrected, thereby efficiently obtaining
high-resolution retinal images™?”. In 2023, Soohyun Lee pro-
posed a high-speed AO confocal ophthalmoscope combining
a DMD and high-speed 2D CMOS camera™?. This system
can easily control the trade-off between image acquisition rate
and contrast by applying different illumination patterns on the
DMD. The camera is synchronized using the DMD to project
multi-point patterns onto the human retina, which is pre-
corrected by AO for parallel scanning. Compared with standard
flood illumination, the multi-point scheme enables frame ac-
quisition rates of up to 250 frame/s, resulting in a 2-3 times
improvement in contrast.

Currently, AO systems have been widely applied in research
fields such as astronomical observations, laser beam shaping,
laser precision engraving, human retinal imaging, biomedicine,
microscopy, wireless laser communication, and photolithogra-
phy. Although significant improvements have been achieved,
technically, these systems still face challenges such as sys-
tem complexity, difficulty in popularization, high costs, and
control difficulties of aberration compensation devices such
as deformable mirrors, and inability to address interference
caused by obstacles in complex imaging environments.

The computational light field adaptive optical imaging sys-
tem aims to mitigate the dual interference of complex environ-
ments on the amplitude and phase of the imaging light field
using hierarchical processing methods in computational imag-
ing. This system involves measuring the overall light field of
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Fig. 42 Adaptive optics using direct wavefront sensing®*. (a) The distortion of the wavefront (blue
lines) is directly measured with a wavefront sensor and minimized by a wavefront modulator
(e.g., a deformable mirror) to improve the image quality of a telescope. Sgr A*, Sagittarius A*.
(b) Beads inside a Drosophila embryo17. (c) Neurons in zebrafish larval brain22 obtained without
and with AO correction.
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the target and interference. By exploiting the distribution char-
acteristics of the 4D light field information of the target and
interference, computational methods are used to effectively dis-
tinguish and filter out the interference. In the field of computa-
tional imaging, the emergence of the light field camera has
provided a novel solution for integrating imaging systems.
The light field camera, developed by Stanford University, can
capture 4D light field imaging information within a large DOF
range. It enables effective imaging at different depths via post-
processing of the data after a single shot. Although the resolu-
tion of the image recorder is reduced, the light field camera
simultaneously achieves a resolution in the depth direction of
the spatial light field. Additionally, the massive amount of data
in a single image contains sufficient light field information, of-
fering high autonomy in post-processing. This approach offers
advantages in terms of a large detecting FOV, using extended
objects as wavefront information-solving beacons, replacing
mechanisms such as deformable mirrors for aberration compen-
sation, and providing a large dynamic range for aberration
detection and compensation. The system is compact and cost-
effective, and it effectively eliminates the impact of obstacles on
imaging in high-dimensional light fields while compensating for
environmental wavefront distortions. This method shows great
potential in various research areas, such as multi-level depth
imaging™¥, 3D information modeling®***!, imaging through
obstacles, full-field multi-view wavefront detection™”**®!, and
multi-level phase recovery™”. Additionally, the potential appli-
cations of AO in flow field 3D structure detection, image en-
hancement, lucky imaging, describing and guiding incoherent
illumination, describing the output of light fields through reso-
nant cavities, multiplexing in laser communication, and high-
energy fiber laser mode decomposition in various research areas
are also worth exploring.

Multi-level depth imaging: Because the full-field data record
the intricacies of the light field, distribution information can be
obtained at different levels of the light field using the full-field
data, combined with computational imaging principles, as
shown in Fig. 43(b). With the multi-level depth distribution
of the light field, digital refocusing imaging of targets at differ-
ent depths can be achieved, enabling a “capture now, focus
later” functionality.

3D information modeling: The full-field data captured by a
light field camera can be considered equivalent to the data col-
lected by an imaging array system. Using the information from
the imaging array along with the principle of parallax, depth
information for each point of the imaged target can be obtained.
The light field model for this is shown in Fig. 43(a).

Imaging through obstacles: Through the application of AO
principles and the analysis of the distribution of the obstacle
in the 4D light field information, the light field information
of the layer where obstacles occur can be weakened while
enhancing the light field information of the target layer. This
enables imaging through obstacles.

Full-field multi-view wavefront detection: Leveraging the AO
theory using full-field data enables complex phase information to
be solved. Compared with traditional wavefront sensing methods,
this approach utilizes few microlenses to perform wavefront de-
tection in a single view direction. By partitioning the entire sub-
aperture plane, it is possible to simultaneously achieve large-field,
multi-view wavefront detection, where the wavefront detection
of each view direction is independent and unaffected by other
directions.
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Multi-level phase recovery: Using the full-field data and AO
theory, complex phase information can be calculated. Combined
with tomographic principles, multi-level phase distribution
can be obtained. This system is simpler, has better synchroni-
zation and uniformity, and is cheaper than traditional multi-
conjugate AO.

4.3.6. Single-pixel imaging

Unlike traditional high-resolution cameras, single-pixel imaging
uses only a single-pixel detector for spatial imaging. During im-
aging, the target scene is spatially sampled using structured
illumination, and the corresponding reflected or transmitted
light intensity values are synchronously recorded by the single-
pixel detector. The detection signal is then correlated with the
distribution of the structured illumination to reconstruct the tar-
get image. Single-pixel imaging can be further divided into pas-
sive and active single-pixel imaging. The most typical example
of a passive single-pixel imaging device is an optical compres-
sive imaging camera. Active single-pixel imaging generally
refers to computational ghost imaging. Both imaging modes
originate from different research fields but have similar opera-
tional principles and basic mechanisms.

Passive single-pixel imaging is most realized by optical com-
pressive imaging cameras. In 2006, Donoho et al. introduced
the concept of compressive sensing in the field of signal pro-
cessing™". The theory of compressive sensing states that accu-
rate reconstruction of sparse signals can be achieved at sampling
rates far below the Nyquist sampling theorem requirements.
In 2007, to further validate the theory of compressive sensing,
Takhar et al. built an imaging system using a single-pixel de-
tector and DMD"™?, The schematic of this camera is shown
in the Fig. 44(a). In this system, the target scene is imaged onto
the DMD, and spatial coding of the image is performed by dis-
playing a series of randomly distributed patterns on the DMD.
The intensity of light after each coding is recorded using a
single-pixel detector. Using the distribution information of
the coding patterns and the detection signals, each different mir-
rored pattern generates a voltage on a single photodiode corre-
sponding to the measured values. Using compressive sensing
algorithms, the scene image can be reconstructed. Importantly,
the spatial resolution of the reconstructed image is significantly
higher than the number of measurements taken during imaging.
They termed this imaging system optical compressive imaging.

Active single-pixel imaging refers to computational ghost
imaging. In 2001, researchers at the Boston University used en-
tangled photon pairs to achieve ghost imaging**"!. However, a
year later, researchers at the University of Rochester demon-
strated ghost imaging using classical light sources. Their experi-
ment was controversial in the academic community and sparked
a debate about whether ghost imaging is a quantum pheno-
menon or belongs to classical theory. In 2004, the Lugiato
group from Italy theoretically proved the possibility of ghost
imaging using incoherent thermal light sources by comparing
the correlation properties of entangled and thermal lights™*,
In 2005, the research group supervised by Yanhua Shih at the
University of Maryland made the first experimental achieve-
ment of ghost imaging using pseudothermal light sources™,
The conclusion from scientific verifications highlighted that
ghost imaging is not purely a quantum phenomenon but an im-
aging technique based on second-order correlations of the op-
tical field. In 2008, Shapiro from MIT introduced SLMs to
generate customized structured light fields in ghost imaging
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Fig. 43 (a) Schematic diagram of the light field camera structure®. (b) All-light images and
detailed information®. (c) Optical model of the light field microscope®*?,

experiments™*”. This eliminated the need for a reference light

path used to measure the distribution of the optical field and
achieved computational ghost imaging using a single optical
path. The author revolutionized the ghost imaging system, sig-
nificantly improving its practicality. In 2009, high-order corre-
lation reconstruction algorithms for ghost imaging were
theoretically and experimentally confirmed, and high-order cor-
relation imaging was reported to enhance the SNR and contrast
of reconstructed images®”. In 2018, Liu et al. from the
Shanghai Institute of Optics and Fine Mechanics, Chinese
Academy of Sciences, used a spectral camera based on ghost
imaging via sparse constrain to obtain a 3D spatial-spectral data
cube of a target in a single snapshot using a 2D detector. The
experimental schematic and result of the camera are shown in
Fig. 44(b)**!. The results show that the new system can modu-
late the spatial and spectral resolutions separately and provide
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the possibility to optimize the fluctuations of the light field of
different wavelengths depending on the imaging scene.
Single-pixel imaging offers a unique sampling approach.
While modern digital cameras use pixelated detector arrays
to capture images, single-pixel imaging samples a scene using
a series of masks and correlates the content of these masks with
the corresponding intensity measurements of a single-pixel de-
tector to reconstruct the image. Typically, a series of structured
light patterns are projected onto the object and the light intensity
is measured using a single-pixel detector. Initially, these light
patterns were generated by rotating ground glass; subsequently,
SLMs and DMD were used to artificially create illumination
patterns. However, employing the Nyquist sampling theorem
for single-pixel sampling does not prevent the proliferation of
illumination modes. Reducing the sample count would sacrifice
SNRs or resolution®. Additionally, the single-pixel video

2024 * Vol. 1(1)



Liu et al.: Future-proof imaging: computational imaging

Photodiode Bitstream

GO\ er\

image

server CCD2
pixel size=13pum x I3pm

%‘ x
detected signal

microscope objective g
B=10 / ity

spatial random
phase modulator

objective lens

filter flat-field grating

Reconstruction Image

random
——continuous

200 400 €00 800 1000
Spectral pixel number

=1x107 ;‘\

»‘ﬂ
,‘AJJJ\

‘\ML—Z

——

300 600 900 1200 1500
Wavenumber (cm')

[I

=
aL

5420m

f=150mm
CCD1
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method™” largely depends on the modulation speed of the
DMD and high data compression rates. Therefore, choosing
an appropriate approach to compress large data or flexibly co-
ordinate the relationship between the SNR, resolution, and im-
aging speed is crucial. Regions of interest (ROIs) are highly
valuable in image and video encoding™". Their use optimizes
coding performance, reduces processing time and bandwidth us-
age, and enhances accuracy in specific regions. In 2017, Phillips
et al. adopted a novel strategy to stimulate the animal’s foveal
vision system to achieve dynamic region of interest sampling in
single-pixel imaging™?. In 2019, Ye et al. demonstrated the ap-
plication of secure regions of interest (SROIs) in the field of
single-pixel imaging using two experiments™?, Experiment
A involved a DMD for generating binary illumination patterns
based on the Hadamard matrix, as shown in Figs. 45(a) and
45(c); Experiment B included a digital light projector to play
composite colored illumination patterns based on the Hadamard
matrix, as shown in Figs. 45(b) and 45(d). Hadamard matrices
were linearly combined into illumination patterns with different
size and color distributions, thereby enhancing the resolution
and spectral information of the region of interest imaging.
Moreover, this linear mapping method has high randomness.
They implemented this randomness into a multicolor cipher
pattern, and only users possessing the cipher pattern can decrypt
the correct image. Various illumination patterns can be dis-
played on the object, and the light intensity is then recorded us-
ing a single-pixel detector. Subsequently, a simple and fast
algorithm can be employed to reconstruct the object. This ap-
proach has applications in various fields such as single-
pixel imaging of biological tissues, real-time imaging of moving
targets, and multispectral image fusion, confirming the feasibil-
ity of the approach.
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Single-pixel imaging utilizes an SLM to encode the spatial
information of an object into a 1D optical signal, which is then
decoded to reconstruct the image using a non-scanning point
sensor device. Specifically, in projection-based single-pixel im-
aging, the object is illuminated with pre-programmed 2D spatial
coding patterns, and the reflected or transmitted light signals are
collected. A single-pixel detector retrieves the spatial informa-
tion of the target along with the fine details of the object from
these light signals. The single-pixel detector serves as the im-
aging device, detecting the object either by providing a tempo-
rally varying detection end signal using an SLM or providing
temporally varying structured illumination to the scene. In ad-
dition to cost-effectiveness, other advantages of single-pixel
imaging include low dark current, high sensitivity, and high-
quality images. Additionally, introducing compressive sensing
theory into single-pixel imaging enables reconstruction with
few measurements. In certain cases, single-pixel imaging tech-
niques have shown competitive advantages over traditional cam-
eras in practical application scenarios owing to the breakthrough
in detector requirements. These advantages include a high SNR,
wide spectral range, low cost, higher detection efficiency, low
dark count, and faster temporal response. Over the past decade,
single-pixel imaging has attracted significant attention for
applications in various fields such as infrared imaging, gas im-
aging, photoacoustic imaging, 3D imaging, terahertz imaging,
tomography, neutron imaging, encryption imaging, and lensless
imaging.

In the field of infrared imaging, in 2018, Zeng et al. pixelated
a hybrid graphene metasurface™" to create an SLM prototype
for high-frame-rate single-pixel imaging, demonstrating an or-
der-of-magnitude improvement over traditional liquid crystal or
micromirror SLMs. The introduction of single-pixel imaging
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provides possibilities for wavefront engineering in infrared
technology.

In the field of photoacoustic imaging, in 2019, researchers at
University College London experimented using a single-pixel
camera for 3D compressed sensing photoacoustic tomogra-
phy™¥. The experimental setup and results are shown in Fig. 46,
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Fig. 46 Experimental setup and results of photoacoustic
imaging®®. (a) Experimental setup diagram. (b) Experimental
phantom for photoacoustic imaging—distorted black polymer rib-
bon. (c) The z-y slice images of the polymer ribbon.
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demonstrating the ability to reduce data acquisition time and the
required amount of data, thus providing high-resolution images
with large fields of view.

Single-pixel imaging is also essential in 3D imaging.
In 2015, Sun et al. proposed a method for single-pixel 3D
reconstruction, designing an imaging system based on the
use of short-pulse structured illumination and high-speed photo-
diodes in a single-pixel camera™®. The imaging system is de-
picted in Fig. 47(a), and an overview of the reconstruction
algorithm is shown in Figs. 47(b)—-47(h). It reconstructs the 3D
image of a scene using the backscattered intensity varying over
time (measured for each output pulse of the laser) and a corre-
lated set of N structural illumination patterns. The incident laser
pulse [Fig. 47(b)] scatters back from the scene. The amplified
analog signal [Fig. 47(c)] is converted into discrete data points
[Fig. 47(d)] by a high-speed digitizer and then is processed by a
computer algorithm. The algorithm uses M discrete sampling
intensity points from the time-varying signal to reconstruct
M 2D images, resulting in an x, y, z image cube [Fig. 47(h)].
In the image cube, each lateral pixel (x, y) has an intensity dis-
tribution along the vertical axis (z) [Fig. 47(g)], depending on
the temporal shape of the pulse, detector response, readout digi-
tization, pixel depth, and reflective information. This system
could reconstruct 3D scenes with a resolution of 128 pixel x
128 pixel within a range of 5 m, achieving an accuracy of
up to 3 mm. Furthermore, by employing a compressed sensing
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Fig. 47 (a) Single-pixel 3D imaging system. (b) lllumination laser pulses backscattered from the
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strategy, continuous real-time 3D videos at frame rates up to
12 Hz could be obtained.

In the field of medical microscopic imaging, in 2021, Deng
et al. proposed a transmission liquid crystal modulated single-
pixel microscope'®”. This microscope employs a partially trans-
parent liquid crystal spatial light modulator (LC-SLM) to
achieve a transmission optical system, simplifying the optical
path of single-pixel microscopic imaging, which obviates the
need for a complex optical path to project Fourier patterns
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and eliminates the necessity for a 4F Fourier filter to mitigate
diffraction effects. With microscopic imaging at different sam-
pling rates, it was discovered that acceptable imaging quality
could be achieved with 10% Fourier spectrum reconstruction,
thereby reducing the number of measurements. Cancer
multispectral images were obtained through illumination at dif-
ferent wavelengths and evaluated for contrast. Using a ground
glass diffuser as the scattering medium, the thickness and posi-
tion of the scattering medium in microscopic imaging were
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analyzed. This prototype of a transmissive single-pixel micro-
scope is expected to find wide applications in microscopic im-
aging of scattering media and medical imaging.

Single-pixel cameras have also been utilized for terahertz and
neutron imaging. In 2020, researchers at the University of
Hong Kong discovered the cost-effectiveness and exceptional
durability of single-pixel cameras™®®. They used a single-pixel
fiber-coupled system to demonstrate real-time display of tera-
hertz videos (32 pixel x 32 pixel, 6 frame/s) using photocur-
rent-based terahertz detectors. This design achieved fast,
noise-resistant imaging without requiring lengthy post-process-
ing and without reducing the time-resolving capability of the
terahertz spectrometer. The following year, researchers at the
Institute of Physics, Chinese Academy of Sciences, presented
neutron single-pixel imaging with specifically designed
masks™. This approach utilized a single-pixel detector to ob-
tain images of complex objects with high spatial and temporal
resolution. The experimental setup demonstrated simplicity, low
cost, and ease of operation.

Summarily, optical systems serve as a crucial component
in imaging, responsible for light field modulation and infor-
mation collection. The design of computational optical systems
is also a critical aspect of the computational imaging pipeline.
Addressing the limitations of traditional photonic imaging,
computational optical systems are evolving toward smaller size,
simpler structure, lower cost, larger FOV, higher resolution,
stronger adaptability to different environments, and the ability
to acquire more dimensions of information.

4.4. Computational detector

A computational detector is designed based on the idea of
computational optical imaging and can project spatial, temporal,
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and physical multidimensional information. Compared with
traditional detectors, computational imaging detectors have
many revolutionary advantages, such as significantly improving
the quality of imaging (SNR, contrast, and dynamic range), sim-
plifying the imaging system (no lens, reduced volume, and re-
duced cost), breaking through the physical limitations of optical
systems and image acquisition devices (imaging dimension,
resolution, and field size), and significantly improving the infor-
mation acquisition capability, functionality, and performance
indicators (phase, coherence, 3D shape, depth extension, blur
restoration, and refocusing) of the imaging system. Current
computational detectors include non-uniform, curved, multidi-
mensional physical quantity, and ultra-high-speed detec-
tors (Fig. 48).

4.4.1. Non-uniform sampling detector

The sampling method of uniform detectors is global equal
weight resampling, which leads to excessive sampling of unim-
portant information, redundant waste, and insufficient sampling
in the parts that require key sampling, hindering the collection
of information. Non-uniform sampling methods can effectively
address this issue by selectively collecting the information re-
quired, thereby improving sampling efficiency and saving sam-
pling space. The non-uniform sampling detector was developed
using non-uniform sampling and non-uniform sampling meth-
ods were used to collect information.

Notably, signals with specific structures can be sampled be-
low the Nyquist rate. In the field of algorithms, Landau discov-
ered in 1967 that, assuming a bandwidth of B, a multi-band
signal with N discontinuous bands of bandwidth B can be rep-
resented by an average sampling rate not less than twice the total
bandwidth. In 2006, Candes et al. extended Landau’s concept to
sparse signals, such as discrete Fourier transform. These results
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Fig. 48 (a) Non-uniform detector**. (b) Curved surface detector**“. (c) Multidimensional physical
quantity detector®®. (d) Ultra-high-speed detector®*%"],
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are termed compressive sensing (CS). In 2017, Michaél et al.
proposed a novel compressed sensing-based converter architec-
ture for cognitive radio frequency receivers®™), as shown in
Fig. 49(a). This method is termed non-uniform wavelet sam-
pling. It combines wavelet preprocessing with non-uniform
sampling to address the challenges of existing converters, such
as signal noise, aliasing, and strict clock constraints, thereby
achieving a wide range of target feature extraction tasks.
However, this method is subject to various real-world limita-
tions, such as noise folding, low sensitivity, aliasing, and limited
flexibility. In 2020, Golowicz et al. used sparse or non-uniform
sampling techniques to significantly shorten experimental time
by omitting most of the data during the measurement process
and mathematically reconstructing the data™"".

In terms of hardware, non-uniform sampling detectors have
also made new progress. In 2022, Wang et al. established a
single-pixel camera using an array detection imaging system
based on the application of CS theory for high-pixel detec-
tion™, This new system can reduce the number of measure-
ments required to reconstruct high-quality images and address
situations where the target may appear in the FOV without in-
creasing the number of detectors. In the same year, Wang et al.
proposed a novel spaceborne high-resolution synthetic aperture
radar (SAR) system using non-uniform mixed sampling tech-
nology. As shown in Fig. 49(b), non-uniform mixed sampling
technology can optimize the timing of SAR signal transmission
and reception. Simultaneously, using the oversampling require-
ments of SAR imaging in the azimuth direction, a theoretical
model of non-uniform mixed sampling parameters and the
relative velocity between the SAR system and spatial targets
has been established. In 2023, Gao et al. proposed a new
shape-aware non-uniform sampling strategy™!. As shown in
Fig. 49(c), dense sampling is performed in the peripheral area,
and sparse sampling is performed in the internal area instead of
uniform sampling, thus sampling additional points from exter-
nal regions and extracting useful features for 3D detection.
However, this technology still has certain limitations, as it can-
not be directly extended to general object detection using a sin-
gle non-uniform sampling model, rendering it difficult to detect
multiple occluded targets.

Non-uniform sampling detectors have been an important
research direction in the fields of image processing and signal
processing in recent years. By unevenly allocating sampling
points during the sampling process, non-uniform sampling
detectors can significantly reduce the sampling rate while
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maintaining image quality, thereby reducing data transmission
and storage costs and improving system efficiency and perfor-
mance. Non-uniform sampling detectors are expected to be
widely applied in fields such as medical imaging, video surveil-
lance, and remote sensing.

4.4.2. Curved surface detector

Curved surfaces are generally favored for image sensors, much
like the 35 mm photographic film used in both human eyeballs
and traditional analog cameras. However, contemporary digital
image sensors are typically flat and suffer from vignetting,
where image quality degrades from the center toward the edges
of the detector. This occurs because photons strike the external
pixels at an angle. To mitigate vignetting, a series of optical
lenses are often employed, but this can result in a bulky optical
system. Consequently, detectors designed with a retina-like sur-
face are well-suited for applications demanding a wide FOV,
high resolution, and real-time performance.

Many researchers have examined the properties of the retina,
as illustrated in Figs. 50(a)-50(f), and they have developed
curved imaging theories and systems that mimic the retina.
The surface of these curved detectors is perpendicular to the
incident light, which significantly enhances their performance
by eliminating dark angles, improving overall brightness, and
enhancing image quality at the periphery.

To enhance image quality, Albert et al. introduced a tech-
nique in 2020 that employs organic photodetectors (OPDs) to
develop high-resolution curved detectors on thin plastic sub-
strates”®, These curved detectors offer more uniform image
quality compared to flat digital detectors and, when paired with
3D reconstruction algorithms, provide improved 3D visualiza-
tion. Additionally, the integration of curved detectors has
halved the size of 3D X-ray imaging systems. In the same year,
Gu et al. unveiled a biomimetic electrochemical eye, featur-
ing a hemispherical retina composed of a high-density
perovskite nanowire array sensitive to light, mimicking the pho-
toreceptors of the biological retina. Illustrated in Fig. 50(g), this
retina replicates the structure of human photoreceptors.
The design of this device closely resembles the human eye,
and processing individual nanowires electrically can lead to
high imaging resolution. The biomimetic electrochemical eye
boasts high responsiveness, fast response times, a low detection
threshold, and a broad FOV. Additionally, the image-sensing
capabilities of this biomimetic device were demonstrated by
reconstructing the optical pattern projected onto it. This

result
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Fig. 49 (a) Empirical phase transition graph of non-uniform wavelet bandpass sampling (NUWBS)
for multi-band signal acquisition compared to the theoretical z1-norm phase transition for a
Gaussian measurement ensemble (shown with the dashed purple ling)®®. (b) Nyquist real-time
sampling and hybrid sampling®®?. (c) The 3D detection results of left and right images and the

corresponding results in bird view are shown??,
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Fig. 50 (a) Schematic of the human visual system. (b) The human eye and (c) the retina.
(d) Schematic of our eyes’ imaging system. (e) The working mechanism of eyes. (f) Perovskite
nanowires and their crystal structures®!. (g) Schematic of the test bench used for characterization
of the curved digital X-ray detector, showing the X-ray source, bone phantom, and curved digital
X-ray detector®. (h) Imaging results acquired by the adaptive imager for objects at different

distances®®.

technology paves the way for the broad adoption of biomimetic
optical sensing devices.

To achieve focused views of objects at various distances, Rao
et al. introduced a high pixel fill factor curved and shaped adap-
tive imager in 20217, This technology was further enhanced
with the development of an adaptive imager that combines a
concave imager with an adjustable mirror to maintain focus
across different distances. Although successful, as shown in
Fig. 50(h), the curved imager has limitations. Its flat origami
structure cannot perfectly fold into a hemisphere, leading to in-
creased optical aberrations, image stitching errors, and complex-
ities in the readout circuit.

Furthermore, to enable multispectral imaging over a large
FOV, Zhang et al. developed a novel biomimetic multispectral
curved compound eye camera in 20232, This camera system,
designed for aerial multispectral imaging, offers a maximum
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FOV of 120 degrees and captures images in seven spectral bands
from visible to near-infrared wavelengths. The technology has
proven effective for large-field aerial multispectral imaging and
shows considerable potential for long-range detection applica-
tions based on aerial imaging.

In summary, curved detectors hold promising prospects
across various fields, including optical imaging, radar imaging,
and medical imaging. Unlike traditional flat detectors, which
struggle with imaging distortions when handling curved or
irregularly shaped objects, curved surface detectors can effec-
tively overcome these issues due to their larger optical receiving
area. By modifying their shape and curvature, these detectors
are capable of multi-point focusing, allowing them to adapt
and optimize imaging for different scenarios. Looking ahead,
advancements in curved detectors are expected to deliver higher
resolution, broader fields of view, and quicker imaging speeds,
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significantly enhancing convenience and efficiency in both
everyday life and professional settings.

4.4.3. Multidimensional physical quantity detector

Since Maxwell first theorized over 150 years ago that light is an
electromagnetic wave, it has been acknowledged that amplitude,
polarization, phase, and frequency are fundamental parameters
of light waves. However, like human eyes, current photoelectric
imaging detectors primarily capture only intensity information,
missing other multidimensional physical properties such as
spectrum, polarization, and phase. This limitation results in a
significant loss of light field information during the imaging
process. To address this, multidimensional physical quantity de-
tectors have been developed, including types such as filter-
based, quantum dot thin films, and metasurfaces.

Metasurfaces, which are artificially structured materials with
thicknesses less than the wavelength of light, allow for flexible
and effective control over the electromagnetic wave’s character-
istics, including polarization, amplitude, phase, and propagation
mode. In 2018, Mitrofanov et al. utilized this technology by de-
signing an optical thin photoconductive channel as a fully di-
electric metasurface™. These metasurfaces achieve enhanced
optical absorption and have been integrated into photoconduc-
tive terahertz detectors, yielding high efficiency and sensitivity.
Compared to similar detectors with unstructured surfaces that
only use 0.5 mW of light excitation, this metasurface detector
produces a photocurrent an order of magnitude higher and ex-
hibits the high dark resistance essential for low-noise detection
in terahertz time-domain spectroscopy and imaging. With such
low light excitation, the metasurface detector achieves an excep-
tionally high SNR of 106.

Terahertz (THz) photoconductive devices, which are instru-
mental in generating, detecting, and modulating terahertz
waves, operate by switching conductivity on a sub-picosecond
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timescale using optical pulses. In 2019, Siday et al. enhanced
the efficiency of this conductivity switching using an electrically
connected network of nanoscale GaAs resonators, creating a
fully absorbed photoconductive metasurface®. This type of
metasurface, when integrated with terahertz antennas, forms
efficient photoconductive terahertz detectors. The perfectly
absorbed photoconductive metasurface paves the way for the
development of various efficient optoelectronic devices, opti-
mizing optical and electronic performance through a network
of nanostructured resonators. In the same year, Li et al. devel-
oped an intelligent metasurface imager and recognizer utilizing
artificial neural network (ANN) technology for adaptive control
of data flow™. This system incorporates three ANNS in a hier-
archical structure to process microwave data into comprehensive
human body images, classify specific anatomical regions (such
as hands and chest), and instantly recognize human hand ges-
tures at a 2.4 GHz Wi-Fi frequency.

Metasurfaces, created by scanning a focused laser beam
within a glass substrate, can be seamlessly integrated with
conventional optical components. In 2019, Zhou et al. intro-
duced an edge detection mechanism using metasurfaces’".
Through experiments, they demonstrated the use of a specifi-
cally designed dielectric metasurface that achieved high optical
efficiency for broadband edge detection. This technology has
significant applications in real-time image processing monitor-
ing, high-contrast microscopy, and compact optical platforms
like smartphones and smart cameras.

The discovery of entangled photons has significantly en-
hanced the imaging capabilities of metasurfaces. In 2020, Zhou
et al. proposed and experimentally demonstrated the use of
polarized entangled photon sources to selectively activate or de-
activate the optical edge detection mode in imaging systems
equipped with efficient dielectric metasurfaces””. As illustrated
in Figs. 51(a) and 51(b), this experiment broadens the scope of
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Fig. 51 (a) The schematics of metasurface enabled quantum edge detection. (b) The switch state
ON or OFF of the heralding arm. When the idler photon of the omen arm projects onto the surface
[H), it indicates a closed state, resulting in the capture of a solid cat. The predicted photons are
projected onto the surface |V), and the edge-enhanced contour cat is obtained in the ON switch
state. (c) Edge-detection experiments with red and green HeNe laser sources®.
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metasurfaces and quantum optics, offering a promising avenue
for quantum edge detection and image processing with im-
proved SNRs. Metasurfaces, whether engineered from dielectric
or metallic structures, hold substantial potential for advancing
quantum edge detection and image processing.

In the realm of 3D computer vision technology, LiDAR is
regarded as a benchmark for robotic vision at the industrial
level. Despite ongoing advancements in LiDAR integration
and optimization, commercial devices often suffer from slow
frame rates and low resolution, primarily due to limitations in
mechanical or solid-state deflection systems. In 2022, Martins
et al. introduced an advanced LiDAR technique that leverages
ultrafast low FOV deflectors combined with large-area metasur-
faces. This configuration enables a broad FOV (150°) and high
frame rates (kHz)”™, allowing for simultaneous imaging of
peripheral and central areas. Integrating this innovative LIDAR
technology with sophisticated learning algorithms offers a new
method for enhancing the perception and decision-making capa-
bilities in advanced driver assistance systems (ADAS) and
robotic systems.

Additionally, significant progress was made in 2023 with
metasurface detectors for edge detection, as depicted in
Fig. 51(c). Tanriover et al. proposed and experimentally dem-
onstrated that metasurfaces based on Fourier optics exhibit
high transmission efficiency for 2D isotropic™™, polarization-
independent, and broadband edge detection across the visible
light frequency spectrum under both coherent and incoherent
illumination.

A multidimensional physical quantity detector is a device
capable of simultaneously detecting various physical quantities,
including polarization, phase, spectrum, and light intensity. This
capability enhances the efficiency and accuracy of data acquis-
ition. Unlike traditional detectors that measure a single physical
quantity and require multiple assessments to gather comprehen-
sive information, multidimensional detectors can capture data
from several parameters in a single measurement. This not only
conserves time and resources but also provides multidimen-
sional spatial information about the target. Consequently, these
detectors enable a thorough description and precise analysis of
the target’s state.

4.4.4. Ultra-high-speed computing detector

The ultra-high-speed computing detector is designed for high-
speed imaging, offering minimal delay and a broad dynamic
range, presenting significant research potential. These detectors
are categorized into two main functionalities: global perception
of the array and dynamic perception of rapid changes, such as
those captured by event cameras.

Ultrafast and efficient single-photon detectors are crucial in
modern quantum optics and quantum communication. Although
their detection efficiency is often hampered by imperfect mode
matching and limited photon absorption, Pernice et al. made a
significant advancement in 2012 by demonstrating a supercon-
ducting nanowire detector atop a nanophotonic waveguide®’”,
This design markedly increases the absorption length of incident
photons, enabling high on-chip single-photon detection efficien-
cies up to 91% at telecommunications wavelengths. It also
allows for replication across multiple chips, maintaining a low
dark count rate without compromising detection efficiency.
Additionally, these detectors offer high temporal resolution,
making them suitable for on-chip implementation.
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To enhance the detection system’s SNR, Chen et al. devel-
oped an algorithm in 2018 aimed at accelerating target recog-
nition®’®!. This method is based on the assumption that the mean
of the eigenvalues of the Wigner matrix is zero, effectively
eliminating background noise eigenvalues for ultra-high-speed
target detection. Despite its ability to identify target speed using
the distribution and mean function of additive Wigner matrix’s
eigenvalues, the method has limitations. Specifically, it loses in-
formation on the variability of feature values at different speeds,
which hampers effective speed differentiation. To address this
issue, Li et al. introduced a new hardware-oriented algorithm
in 2019, illustrated in Figs. 52(a) and 52(b)*". Designed for
implementation on field programmable gate arrays, this algo-
rithm supports high-speed vision platforms. It is tailored for
high-frame-rate, high-data-throughput, and high-parallelism
processing of low-latency video streams, effectively distinguish-
ing between different speeds.

Recent advancements have also been made in the field of
event cameras, a novel type of sensor that captures brightness
changes as asynchronous “event” streams instead of traditional
intensity frames. Event cameras offer several advantages over
conventional cameras, including high temporal resolution,
HDR, and the absence of motion blur. In 2019, Rebecq et al.
introduced a new recurrent network designed to reconstruct vid-
eos from event streams, which was trained using a large dataset
of simulated event data™®. This development enhances the
method of synthesizing color images from color event streams.
Experiments have demonstrated that this network can generate
high-frame-rate videos (over 5000 frames per second) capturing
high-speed phenomena, such as bullets striking objects, and can
provide HDR reconstruction even under challenging lighting
conditions. As depicted in Fig. 52(c), the network’s ability to
effectively reconstruct event data as an intermediate representa-
tion has been proven, showing that traditional computer vision
algorithms can be adapted for tasks like target classification
reconstruction and visual-inertial odometry.

In a recent development, Glover et al. introduced a new
method for corner detection in 2021, named Find Event
Harris, which utilizes the Harris algorithm to achieve high ac-
curacy while improving event throughput™. This algorithm
minimizes the computational load for each event and conducts
computationally intensive convolutions as swiftly as possible,
that is, only when computing resources become available.
The result is an effective, real-time angle detector that operates
at a speed more than 2.6 times faster than current state-of-the-art
devices.

Building on previous research, Baldwin et al. proposed a
method in 2022 for representing temporal aspects of events”*,
As illustrated in Figs. 52(d) and 52(e), this approach aims
to compactly store original peak timing information with min-
imal information loss. The biomimetic design features high
memory efficiency and rapid processing speeds, and it avoids
time constraints such as fixed, predefined frame rates. It also
incorporates “local memory” to retain past data, enhancing
performance in various applications including event denois-
ing, image reconstruction, classification, and human pose
estimation.

Ultrafast detectors are crucial for observing and capturing
extremely rapid phenomena in the microscopic world. With re-
sponse times of milliseconds or even sub-milliseconds, these
detectors enable the high-speed detection and recording of vari-
ous physical processes, such as light, electricity, and magnetism.
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Providing precise time resolution, ultra-high-speed detectors
offer critical data support for studying transient behaviors of
physical processes and tracking rapidly moving objects. They
hold vast potential in fields like engineering testing, medical
diagnostics, and communication technology.

The emergence of computational detectors has revolution-
ized imaging systems by not only simplifying them but also
enhancing their imaging quality. These detectors transcend
the physical limitations of traditional optical detectors, signifi-
cantly boosting the information acquisition capabilities and per-
formance metrics of imaging systems. As these technologies
continue to evolve, computational detectors are expected to ad-
vance further, providing even more robust support for scientific
research and exploration.

4.5. Computational processing

As science and technology advance, a variety of new detectors
have emerged. However, in certain situations such as overly
strong or weak illumination, or insufficient resolution of equip-
ment, these detectors still cannot directly produce satisfactory
images. Computational processing serves as the final step in
the imaging chain, where image data captured by detectors
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are algorithmically processed to adjust images to levels more
suitable for human observation. Computational processing can
generally be categorized into three areas: image fusion, image
enhancement, and super-resolution (Fig. 53).

4.5.1. Image fusion

Image fusion involves using computer algorithms to combine
source images captured by different types of detectors into a
single image that contains rich details from the original sources,
making it easier for the human visual system to observe.
Compared to individual source images, a fused image can more
clearly capture the scene information of the target, significantly
improving the quality and clarity of the image. Image fusion
can be tailored for specific applications, including multi-focus
image fusion, infrared-visible light fusion, and multispectral
hyperspectral fusion.

In daily life, when using cameras, people strive to capture
clear images of entire scenes. However, due to the limited
DOF of camera lenses, not all areas can be in focus simultane-
ously, resulting in some parts of the image being sharp while
others are blurred. Multi-focus image fusion technology ad-
dresses this issue by combining multiple images, each focused
on different areas of the same scene, into a single clear image.
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This significantly enhances the effective utilization of the infor-
mation captured in the images.

In the realm of multi-focus imaging, challenges, such as
anisotropic blur and registration errors, frequently occur due
to movement of the objects or camera. These issues consider-
ably degrade the quality of the fused images. In 2014, Zhou
et al. introduced an improved fusion method that utilizes a
weighted gradient approach to resolve artifacts caused by
anisotropic blur and misalignments™®'!. This method surpasses
traditional fusion techniques by more effectively handling
anisotropic ambiguity and registration errors, and it also requires
less memory. Following this, in 2014, Liu et al. developed a
novel multi-focus image fusion method employing dense
scale-invariant feature transform (SIFT), which aligns misregis-
tered pixels across multiple source images to enhance the fusion
quality™. These methods involve blocking techniques to detect
focus areas; however, the fixed size of image blocks leads to a
block effect at the boundaries of the fused image, affecting the
quality of the fused result.

With the advancement of deep learning, its significance in
image processing has grown. In 2021, Zhang et al. proposed
an unsupervised generative adversarial network (GAN), named
MFF-GAN, with adaptive and gradient joint constraints for
multi-focus image fusion. The architecture of this network
is illustrated in Fig. 54. MFF-GAN not only achieves good over-
all clarity but also preserves local details, particularly near the
junctions of focused and defocused areas.

Infrared imaging is notable for its robust anti-interference
capabilities, strong target recognition, and all-weather function-
ality. However, infrared images often suffer from low contrast,
blurred edges, alow SNR, and complex components. Conversely,
visible light imaging boasts rich spectral information, high
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resolution, and a wide dynamic range, but it struggles with
low contrast in night vision and low visibility environments.
Using either infrared or visible images alone has significant
limitations. Visible and infrared image fusion (VIF) combines
the infrared radiation information with the detailed information
of visible light, finding applications in fields such as industry,
daily life, military, and surveillance, and it is a key research area
in image fusion. One objective of combining infrared and visible
images is to merge the complementary information from both to
provide a comprehensive view of a scene from different perspec-
tives. Existing fusion methods based on GANSs often fail to iden-
tify and enhance the most distinctive regions of the images.
Addressing this, in 2021, Li et al. introduced an end-to-end
infrared and visible image fusion method known as Attention
FGAN™*, This method enables the generator and discriminator
to focus on the foreground target information in infrared images
and the prominent details in visible images, ensuring that the fu-
sion retains the intensity and texture information of the original
images effectively.

Moreover, the aim of infrared and visible image fusion is to
create a composite image that not only highlights prominent tar-
gets and preserves rich texture details but also supports the com-
pletion of advanced visual tasks. Existing fusion algorithms
often focus solely on the visual quality and statistical metrics
of the composite image, neglecting the demands of more sophis-
ticated visual tasks. To address these challenges, in 2022, Tang
et al. developed a semantic-aware real-time image fusion net-
work, SeAFusion, which bridges the gap between image fu-
sion and advanced visual tasks. This enhances the performance
of visual tasks on fused images and improves the network’s abil-
ity to capture spatial details. The algorithm is efficient and suit-
able for real-time preprocessing in advanced visual tasks. This is
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due to the fact that the existing image fusion algorithm does not
consider the illumination factor in the modeling process.

Additionally, considering the challenges of extreme light-
ing conditions, Tang et al. in 2022 proposed the PIAFusion
network, a progressive image fusion framework based on illu-
mination perception*”. This network, depicted in Fig. 55, adap-
tively maintains the intensity distribution of prominent targets
and preserves the texture details in the background by integrat-
ing meaningful information from the source images around the
clock based on varying illumination conditions.

Considering the limitations in optical imaging, image acquis-
ition equipment usually compromises between spatial infor-
mation and spectral information. Hyperspectral images (HSIs)
are rich in spectral information, allowing for precise identifica-
tion and classification of targets. Multispectral images (MSIs),
on the other hand, provide detailed geometric features due to

their richness in spatial information. The fusion of multispectral
and HSIs aims to combine high-resolution multispectral (HrMS)
and low-resolution hyperspectral (LrHS) images to create high-
resolution hyperspectral (HrHS) images. In 2021, Dian et al.
proposed a new fusion method for HSI and MSI based on sub-
space representation and a convolutional neural network (CNN)
denoiser, termed CNN-Fus™”. This method requires only an in-
itial training on more accessible gray-level images and can be
applied to any HS and MS dataset without the need for retrain-
ing. It outperforms the most advanced fusion methods in terms
of performance. In 2022, Xie et al. developed a network archi-
tecture called MHF-net for the MS/HS convergence task and
introduced two deep learning mechanisms for common real-
world scenarios: consistent MHF-net and blind MHF-net™*.
The former is designed for scenarios in which the spectral
and spatial responses of the training and test data are consistent,

"
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< AR\
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(b)

Visible
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Y Y
Images Features

Fig. 55 PIAFusion network®®, (a) The framework of PIAFusion network. (b) Visualized results of
images and feature maps in the nighttime scenario. The first column shows the infrared image,
visible image, and fused image, respectively. The following three columns present the feature
maps corresponding to the infrared, visible, and fused images in various channel dimensions.
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while the latter caters to situations where these responses do not
match, ensuring successful image fusion. The structure and
experimental results are illustrated in Fig. 56.

However, hyperspectral images often contain significant
noise due to factors such as adverse weather or aging sensors,
including Gaussian, stripe, and mixed noise, which degrade the
quality of the fused images. In 2022, Sun et al. introduced a
multi-scale low-rank depth back projection fusion network
(MLR-DBPFN), which effectively removes spectral noise char-
acteristics, achieving high-quality HS fusion under noisy con-
ditions™. While MLR-DBPFN demonstrates robust fusion
performance and noise removal, it is currently limited to data-
sets with a spatial resolution of 4. Enhancing these methods to
accommodate higher spatial resolutions remains a crucial area
of research.

4.5.2. Computational image enhancement

Computational image enhancement involves emphasizing im-
portant information in an image according to specific needs
while reducing or eliminating unnecessary details. For instance,
images captured at night often suffer from low contrast and dark
colors. Image enhancement techniques can adjust these images
to make them more suitable for human observation. This section
will cover four key areas: contrast enhancement, low light
enhancement, HDR imaging, and virtual histological staining.

Contrast is a crucial visual feature in digital image process-
ing, referring to the degree of brightness difference within an
image. High-contrast images show a clear distinction between
bright and dark areas, whereas low-contrast images do not dis-
play these differences distinctly. Contrast enhancement involves
adjusting the image’s brightness distribution to amplify the
differences between bright and dark areas and enhance the gray
level differences across various parts of the image, making it

N

band linear
combination

(a) y RHXWXS

C € RhWXHW

01+ N

® + downsampling

o

Estimate down sampling operator

r------l _____ 5 Training sample Training data
i i
© | ’ % !\l ------
C) i
| i
G Nl e ——
1 1
ol 5
: : — o e o
! Original data }-=== Original sample

Z c ]thwxs I

y Reference

clearer and easier to observe and analyze. In 2013, Lee et al.
proposed a contrast enhancement algorithm based on the hier-
archical differential representation of a 2D histogram™', This
method enhances image contrast by enlarging the gray level
differences between adjacent pixels, effectively improving both
the objective and subjective quality of the image.

Previous single-image contrast enhancement (SICE) meth-
ods typically adjusted the image’s tone curve to correct contrast.
However, limited by the information available in a single image,
these methods have often failed to reveal detailed image fea-
tures. In 2018, Cai et al. utilized a CNN to train a SICE enhancer
using a large-scale multi-exposure image dataset™". This ap-
proach allows the CNN to enhance the contrast of underexposed
or overexposed images effectively. However, in cases of severe
overexposure, where little usable information remains, these
methods struggle to reconstruct the lost details in highly over-
exposed areas.

Histogram equalization (HE), a common technique for
enhancing contrast, does not consider the neighborhood infor-
mation around each pixel, which can introduce noise into the
output image. To address this issue, in 2022, Agrawal et al. in-
troduced new joint histogram equalization (JHE) technology®*?'.
This technique utilizes the relationships between each pixel and
its adjacent pixels to improve image contrast more effectively
than traditional HE methods. Importantly, it also works well
for images with low dynamic ranges. Figure 57 illustrates the
enhancement results achieved using these three algorithms.

The existing CNN architecture has failed to achieve the best
results in both the performance and application scope of infrared
image enhancement tasks. In order to solve this problem, in
2018, Kuang et al. proposed a deep learning method for single
infrared image enhancement (IE-CGAN)™ and introduced
a conditional generation countermeasure network into the

HrMS imge

lnput
samples

samples

CMHF-net

BMHF-net

Fig. 56 MHF-net®®, (a) and (b) are illustrations of the observation models for HrMS and LrHS
images, respectively. (c) is the illustration of how to create the training data when HrHS images
are unavailable. (d) is the illustration of the blind MH/HS fusion net. (e) is the experimental results.
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Fig. 57 Results of three methods. (a) Lee’s method®. (b) SICE®". (c) JHE®*,

optimization framework to avoid amplifying background noise a double-branch network to compensate for global color distor-
and enhance contrast and detail. This method is superior to the  tion and local contrast reduction, respectively™. This method
existing image enhancement algorithms in contrast and detail can generate realistic results without introducing excessive
enhancement. The specific structure of the network and the en- enhancement and extra computational burden.
hancement results are shown in Fig. 58. Due to unavoidable environmental or technical limitations,
Due to the absorption and scattering of light, the captured such as insufficient lighting and limited exposure time, images
underwater images usually contain serious color distortion captured under poor lighting conditions often suffer aestheti-
and contrast reduction. In order to solve the above problems, cally and perform poorly in advanced visual tasks. Low-light
in 2020, Fu et al. combined the advantages of deep learning enhancement processes these images through algorithms to im-
and traditional image enhancement technology and proposed prove their visibility and suitability for advanced visual tasks.
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Trrr

Fig. 58 IE-CGAN®®, (a) An overview of IE-CGAN. (b) Results of two methods.
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This technique has broad applications across various fields, in-
cluding visual monitoring, autonomous driving, and computa-
tional photography.

In surveillance and tactical reconnaissance, collecting and ac-
curately processing visual information from dynamic environ-
ments is crucial, but cameras often struggle to capture clear
images or videos in low-light conditions. In 2017, Lore et al.
introduced a method based on a depth self-encoder (LLNet)
that identifies signal features in low-light images and adap-
tively brightens them without over-amplifying or saturating the
brighter areas in HDR images™'. Enhancing low-light images
involves not only restoring brightness but also addressing com-
plex issues such as color distortion and noise. Simple bright-
ness adjustments are insufficient for solving these challenges.
In 2021, Lv et al. proposed an attention guidance enhancement
scheme that uses an attention map and noise map to guide the
enhancement in a region-adaptive manner®™®, In 2022, Li et al.
developed a depth network for low-light image enhancement
called Zero-DCE, which supports end-to-end training without
reference images and is noted for its lightweight and rapid
application value'”,

Among existing enhancement technologies, Retinex-based
and learning-based enhancement methods are at the forefront of
research. To bridge the gap between these two approaches, in
2022, Zhao et al. introduced a new Retinex decomposition strat-
egy termed RetinexDIP, which reinterprets the decomposition
process as a generation problem and performs Retinex decompo-
sition without relying on external images™*. This method allows

RetinexNet
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Noise Structure from

Natural Bright ' fron
histogram equalization

Natural Dark

RetinexDIP

LLNet-Gaussian

for easy adjustment of estimated illuminance for enhancement,
though it is limited by lengthy optimization times. Figure 59
displays the results from the aforementioned methods.

Because of the great changes in brightness and contrast, aer-
ial images in low-light conditions are a challenging problem.
In 2022, Singh et al. proposed a new architecture called
RNet, which was used to enhance aerial images in low light**,
RNet uses multi-scale feature fusion to extract rich local seman-
tic information through high-resolution features and uses low-
resolution representation to understand the global context. The
proposed network can be superior to other methods based on
deep learning and traditional enhancement techniques.

Low-light image enhancement aims at improving the visual
quality of images taken in low illumination. However, there are
many problems in existing low-light enhancement methods,
such as poor robustness to various low-light conditions or sac-
rificing computational efficiency to enhance performance,
which hinder their practical application. In order to solve these
problems, in 2024, Li et al. proposed a new enhancement
method called Pixel-by-Pixel Gamma Correction Mapping
(PWGCM)P**™ which combined Pixel-by-Pixel Gamma Correc-
tion (GC) and deep learning, and could handle various low-light
scenes with extremely fast speed and low computational cost.
The specific structure of the network and the enhancement
results are shown in Fig. 60.

In the field of low-light image enhancement, existing deep
learning methods face three challenges: inaccurate reflection
component estimation, poor image enhancement ability, and
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Fig. 59 Imaging results of four methods. (a) RetinexDIP®®., (b) LLNet™. (c) Zero-DCEP*".

(d) Lv’s method?®!,
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Fig. 60 PWGCM®, (a) Overview of PWGCM. (b) Visualization of gamma correction map and the
results in each iteration. (c) Results of several methods.

high calculation cost. In 2024, Yang et al. proposed ULENet, an
ultra-lightweight and efficient neural network for low-light im-
age enhancement™"!, In the complex low-light scene, ULENet is
obviously superior to other most advanced low-light enhance-
ment methods in speed, accuracy, and adaptability, but the proc-
essed image noise will be very obvious under extremely low-
light conditions.

In the future, advancements in low-light image enhancement
should aim not only to enhance image quality but also to in-
crease optimization speed. Achieving real-time imaging under
low-light conditions will better support advanced visual tasks
such as unmanned driving and visual monitoring.

Histological staining is the gold standard of tissue examina-
tion in clinical pathology and life science research. It uses color
dyes or fluorescent markers to visualize the tissue and cell struc-
ture, making the sample easy to observe. However, the current
histological staining work requires complicated sample prepa-
ration steps, specialized laboratory infrastructure, and trained
technicians, which makes it expensive and time-consuming.
Virtual histological staining technology directly generates
dyed samples through the neural network, which reduces the
time-consuming and laborious histological staining procedure.
In 2019, Rivenson et al. used CNNs to convert the wide-field
fluorescence images of unlabeled tissue sections into histologi-
cally stained versions of the same samples”®. Professional
certified pathologists have made a blind comparison between
this virtual histological staining method and the standard histo-
logical staining method. There is not much difference in micro-
scopic image staining of human tissue sections of the salivary
gland, thyroid gland, kidney, liver, and lung with different types

Advanced Imaging

012001-64

of stains. The specific structure of the network and the results of
lung staining are shown in Fig. 61.

Histological analysis of arterial tissue samples is a widely
used method for diagnosis and quantification of cardiovascular
diseases. Labor-intensive tissue staining procedures hinder his-
tological image analysis. In 2020, Li et al. developed a method
based on deep learning”®, which transformed the bright-field
microscope images of unlabeled tissue sections into equivalent
bright-field images of histologically stained versions of the
same samples. After evaluation by professional pathologists,
there is no obvious difference between the virtual staining
and standard histological staining images of rat carotid artery
tissue slices, and this method can be combined with other
unlabeled microscopic imaging methods.

Histological analysis of tissue samples is the basis of diag-
nosing the risk and severity of ovarian cancer. The commonly
used hematoxylin-eosin (H&E) staining method has compli-
cated steps and strict requirements, which seriously affects the
study of histological analysis of ovarian cancer. The virtual his-
tology staining of GAN provides a feasible method for these
problems. In 2021, Meng et al. proposed a weak supervised
learning method to generate the autofluorescence image of
the undyed ovarian tissue slice corresponding to the H&E-
stained ovarian tissue slice®. Through the doctor’s evaluation,
the accuracy of the fluorescent image of ovarian cancer gener-
ated by this method reaches 93%. H&E staining of pathological
sections of ovarian cancer provides a more effective solution.

The dynamic range of natural scenes is extensive, but the dy-
namic range of commonly used cameras is limited. A single shot
from a camera can only capture a restricted interval of the
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natural scene’s dynamic range, often resulting in the loss of
some scene information. To address this, HDR imaging has
been developed. This section briefly discusses multi-exposure
image fusion and learning-based HDR imaging technologies.

Multi-exposure image fusion is a vital technique for recon-
structing HDR images without the need for hardware changes,
radiance restoration, or complex methodological workflows.
It has been widely adopted across various fields. Based on
fusion rules, this method merges images taken at different ex-
posures to produce images rich in dynamic range, capturing
the full breadth of natural scenes as much as possible. In
1997 at Special Interest Group on GRAPHics and Interactive
Techniques (SIGGRAPH), Debevec ef al. presented a seminal
paper titled “Recovering high dynamic range radiation patterns
from photographs™**!. This paper detailed a process of taking
multiple photos of the same scene at different exposure settings
and then combining these photos into a single HDR image
that spans from dark shadows to bright light sources or high
reflections.

Eliminating the ghosting phenomenon in traditional HDR
images, especially those with movement, poses a challenge.
In 2012, Takao et al. proposed a multi-exposure fusion method
designed to compensate for motion, occlusion, and saturated
areas, enabling the production of HDR images free from motion
blur®*. More recently, in 2022, Han et al. introduced a multi-
exposure fusion depth perception enhancement network, known
as DPE-MEF"™"”, The specific structure and experimental results
of this network are depicted in Fig. 62. The network comprises
two sub-modules: the detail enhancement module (DEM),
which ensures the preservation of details and structure in the
fused image; and the color enhancement module (CEM), which
enhances the vividness of the colors in the image. However, is-
sues such as camera and subject movement can sometimes cause
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misalignment between the foreground and background in the
exposure sequence, potentially leading to unsatisfactory fusion
results when using static fusion methods.

HDR technology, based on deep learning, is a combination of
deep learning and HDR imaging technology. It uses the neural
network to learn and predict the brightness information of the
image. Hence, it can generate a more realistic image. Compared
with multi-exposure fusion, HDR technology based on deep
learning has higher computational efficiency and better imaging
quality. Additionally, HDR technology based on deep learning
has better adaptability and flexibility, and it can better handle
complex image data. In 2017, Eilertsen et al.”™ solved the prob-
lem of predicting the information lost in the saturated image area
to realize HDR reconstruction from a single exposure. This
method can reconstruct high-resolution and visually convincing
HDR results in most cases, but there is a large saturated area
for all color channels. Therefore, it is impossible to infer the
structure and details. In 2021, Niu et al.”®' proposed a new
HDR model based on GAN, HDR-GAN, to solve the problems
due to the movement of large objects in the scene. This method
can produce reliable information in areas where content is miss-
ing. The specific network structure and experimental results are
shown in Fig. 63.

Due to the lack of benchmark datasets and solutions for
dynamic scenes, learning-based multi-exposure fusion (MEF)
mainly focuses on static scenes, and it is easy to produce ghost-
ing artifacts when dealing with more common scenes (input im-
ages contain motion). In 2023, Tan et al.®'” created a dynamic
scene MEF dataset to fill this gap. This dataset contains multi-
exposure image sequences and their corresponding high-
quality reference images. Furthermore, they proposed a deep
dynamic MEF (DDMEF) framework, which only reconstructs
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high-quality images without ghosts from two dynamic scene im-
ages with different exposures.

With the development of technology, the resolution of photos
acquired via the latest electronic products has become very high.
For the existing models based on CNN, it is an arduous task to
reconstruct HDR images directly from high-resolution images
due to limited memory resources. In the future, it is necessary
to examine a model that can efficiently and effectively perform
HDR imaging on high-resolution images.

4.5.3. Super-resolution reconstruction

Image resolution is a critical performance parameter used to as-
sess the amount of detailed information an image contains.

High-resolution (HR) images, compared to low-resolution (LR)
images, typically feature more pixels per inch, richer texture de-
tails, and higher fidelity. However, due to various constraints
such as the limitations of imaging equipment, environmental
factors, network transmission mediums, and bandwidth, as well
as the inherent flaws in the image degradation models, obtain-
ing ideal high-resolution images directly is often not feasible.
The most straightforward method to enhance image resolution
involves upgrading the optical hardware in the acquisition sys-
tem. However, significant improvements in manufacturing
processes are challenging to achieve and often come with high
costs. Therefore, the focus has shifted toward software and al-
gorithmic solutions, where specific algorithms are employed
to convert a given low-resolution image into a corresponding
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Fig. 63 HDR-GANE™., (a) lllustration of the proposed framework. (b) Imaging results of
HDR-GAN.
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high-resolution one. This approach, known as image super-
resolution reconstruction, has become a prominent area of re-
search across various fields, including image processing and
computer vision.

Traditional super-resolution reconstruction techniques can be
broadly classified into three categories: interpolation-based,
reconstruction-based, and learning-based methods. The inter-
polation approach primarily utilizes the known grayscale
information of pixel points in low-resolution (LR) images,
employing interpolation formulas to enhance the grayscale in-
formation between pixel points and achieve image enlargement.
Reconstruction-based methods leverage probability theory and
set theory, using LR images and prior knowledge to establish an
optimal solution model. Shallow learning methods, on the other
hand, depend on rule constraints and mapping relationships.
These methods learn the transformation from LR to high-
resolution (HR) images from a large number of training samples
and apply this learned relationship to predict HR images from
LR images. In 2001, Rajan et al. proposed a generalized inter-
polation scheme for image expansion and super-resolution im-
age generation®'",

This scheme excels at preserving regional uniformity and
local variations in scene reflectivity during the interpolation pro-
cess. By 2006, Zhang et al. developed an edge-guided linear
minimum mean square error estimation technique for image
interpolation®?, which avoids interpolating in the direction
of edges, thus significantly reducing ringing and other visual
artifacts. In 2011, Wu et al. introduced a learning-based super-
resolution method that utilizes a KPLS regression model to gen-
erate an initial super-resolution image, which is then enhanced
by compensating with a residual HR image before fusing
the original and residual images to produce the final super-
resolution image"™'®. The principles and experimental results of
this method are displayed in Fig. 64. In 2013, Wang et al. pro-
posed an edge-oriented single-image super-resolution (SISR)
algorithm®™, This method estimates a clear HR gradient field

directly from the input LR image, and this gradient is then used
as a constraint to reconstruct the HR image, preserving fine
details and sharp edges while minimizing blurry artifacts.

Traditional sparse representation models (SRMs) often strug-
gle with image interpolation because the data fidelity term does
not impose structural constraints on missing pixels. In response,
Dong et al. in 2013 introduced a nonlocal autoregressive model
(NARM), integrating it with the SRM to enhance its effective-
ness for image interpolation™"!. This integration significantly
reduces the coherence between the sampling matrix and the
sparse dictionary, improving SRM’s performance. In 2014, Liu
et al. adapted a Bayesian method for video super-resolution that
estimates potential motion, blur kernels, and noise levels while
reconstructing the original HR frame®'®'. This method is capable
of producing super-resolution results and is adaptable to various
noise levels and fuzzy kernels.

Despite these advancements, the limited data retrieved from
LR images still poses a challenge in restoring clear, detailed, and
artifact-free images. In 2018, Yang et al. proposed a SISR
method based on adaptive fractional step interpolation and
reconstruction®™”. This approach effectively synthesizes clear
edges while preserving texture information, with results demon-
strated in Fig. 65.

In traditional methods, the interpolation-based method has a
poor processing effect in pixel abrupt changes such as edges
and textures, and it is prone to sawtooth and block effects. The
method based on reconstruction cannot simulate the real scene
well. The method based on shallow learning is used in the case
of small data, and the process of artificially designing features is
complicated. The method based on deep learning involves using
a significant amount of training data to learn certain correspond-
ing relationships between low-resolution images and high-
resolution images and then predict the high-resolution images
corresponding to low-resolution images according to the learned
mapping relationship. This aids in realizing the super-resolution
reconstruction process of images. This type of algorithm not

(b) Results obtained with
nearest neighbour interpolation

(a) Reference HR images

(¢) Results obtained with single-
step KPLS method

(d) Results obtained with
proposed method

Fig. 64 Experimental results of Wu’s method®". (a) shows sample HR images including a wall
image and a grape image, which are downsampled by factor 4 to get the corresponding LR images
for testing. (b)—(d) show the experimental results conducted on the low-resolution image.
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Fig. 65 Experimental result of Yang’s method®'". (a) Low-resolution image. (b) The result of
bicubic interpolation. (c) Results of the proposed method.

only changes the extraction and reconstruction of image features
from the deep network structure but also solves the problems
due to the deepening of network structure, such as over-fitting,
gradient disappearance or explosion, sharp increase of model
parameters, non-convergence or instability of the network, and
self-optimization of parameters. This in turn obtains multi-scale
and multi-detail image information. In 2016, Dong et al.®"® pro-
posed the super-resolution convolutional neural network
(SRCNN) method, which directly learned the end-to-end map-
ping between low/high-resolution images. It not only has good
imaging quality but also has fast imaging speed.

Most of the existing SR models based on CNN require high
computing power and rarely explore the intermediate features
that can aid in the final image restoration. To solve these prob-
lems, in 2021, Lan et al.®"”' proposed MADNet, which exhibits
enhanced performance with few multiple additions and param-
eters. Although the methods based on CNNs exhibit good per-
formance, their ability is limited when dealing with large-scale
super-resolution tasks such as remote sensing images. In 2021,
Dong et al.”* developed a dense sampling super-resolution net-
work (DSSR) to explore the large-scale SR reconstruction of
remote sensing images. The image SR of deep CNN often
has the problem of unstable training, which leads to poor
performance of image SR. To solve this problem, in 2021,
Tian et al.”*"" proposed a super-resolution CNN (CFSRCNN)
from coarse to fine. The low-resolution and high-resolution
features are combined by cascading several types of modular
blocks to prevent unstable training and performance degradation
due to up-sampling operation, and a feature fusion scheme
based on heterogeneous convolution is used to significantly im-
prove the computational efficiency of super-resolution without
sacrificing the visual quality of reconstructed images.

Considering that super-resolution CNN algorithms usually
require extremely deep architecture and long training time, they
cannot use features on multiple scales and weight features
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equally or only on static scales. This limits their learning ability.
In 2022, Anwar et al.”* proposed the dense residual Laplacian
network (DRLN). The network adopts cascaded residuals in
the residual structure such that the low-frequency information
flow can learn high-order and middle-order features centrally.
Additionally, in-depth supervision is realized by setting closely
connected residual blocks, which can aid in learning from ad-
vanced complex features. The specific structure and experimen-
tal results of the network are shown in Fig. 66.

Super-resolution (SR) of the remote sensing image can make
up for the lack of resolution of the original image. However,
due to the lack of image information in the low-resolution
(LR) image, SISR is an inherently ill-posed problem. In 2022,
Dong et al.”?*" established a benchmark dataset and proposed
RRSGAN, an end-to-end network with the gradient-assisted
feature alignment (GAFA) module, and texture converter.
The fine texture in LR images can be effectively reconstructed
using the aligned reference image (Ref) features.

With the continuous progress of super-resolution methods
based on CNNss, the parameters of these methods and consump-
tion of computing resources are also increasing. Hence, it is
difficult to implement these methods on devices with low com-
puting power. To solve this problem, Zhu et al."*" proposed a
lightweight SISR network in 2022, which has the expected
maximum attention mechanism (EMASRN) to obtain better bal-
ance performance and applicability. Compared with the existing
lightweight SISR method, EMASRN reduces the number of
parameters by nearly one-third. Figure 67 shows the structure
and results of the network.

The super-resolution (SR) of remote sensing images using
CNNs is mostly amplified by the up-sampling layer at the
end of the model, which ignores the feature extraction in high-
dimensional space, thus limiting the performance of SR. To
solve this problem, in 2022, Lei et al.**' proposed a new remote
sensing image SR framework (TransENet) to enhance the
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Fig. 66 DRLN®*?, (a) The detailed network architecture of DRLN. (b) Results of different methods.
The key contrast parts in the red rectangle are magnified to display on the right. The LR image

used for reconstruction is obtained by downsampling the HR image by a factor of 4.

high-dimensional feature representation after the up-sampling
layer. TransENet can be combined with the traditional SR
framework to integrate multi-scale high/low-dimensional fea-
tures, improve the super-resolution results, and exhibit superior
performance. In the same year, Zhu et al.”®' proposed a
cross-view capture network (CVCnet) for stereoscopic image
super-resolution, which uses the global context and local fea-
tures extracted from two views to realize stereoscopic image
super-resolution.

In the field of high-resolution image reconstruction, ghost
imaging (GI) typically requires a large number of single-pixel

Ix1 Conv

DPB
o) B
T PMSFE
: DPB

An overview of EMASRN network.

samples, which constrains its practical application. To address
this, in 2022, Wang et al. developed a far-field super-resolution
GI technology named GIDCP?"!. This method combines the
physical model of GI with a deep neural network to create a
hybrid system that does not require pre-training on any dataset
and can reconstruct far-field images surpassing the diffraction
limit. The experimental setup and comparative results are illus-
trated in Fig. 68.

The aim of lightweight network design is to strike a balance
between computational efficiency and performance adaptability.
Historically, network structures have been manually designed
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g
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Fig. 67 EMASRN®, (a) An overview of the EMASRN network. (b) Results of different methods.

The key contrast parts in the red rectangle are magnified to display on the right. The LR image
used for reconstruction is obtained by downsampling the HR image by a factor of 4.
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with complex, fixed configurations that often require extensive
experimentation and offer limited flexibility to adapt to varied
input image statistics. In 2023, Park et al. introduced a dynamic
residual self-attention network (DRSAN) for lightweight SISR.
This network adapts to input statistics using different com-
binations of residual features and incorporates a residual self-
attention (RSA) module to enhance performance in conjunction
with existing structures, all without the need for additional mod-
ules”®. This design approach and attention mechanism can be
seamlessly integrated into other residual networks without the
need for a complex network structure.

However, given that image super-resolution reconstruction
primarily relies on post-processing data, the results may differ
from actual values. Bridging super-resolution reconstruction
more closely with the imaging process to achieve genuine super-
resolution is a promising direction for future research.

As the final component of computational imaging technol-
ogy, computational processing refines images through various
algorithms to meet practical application demands. The evo-
lution of computational imaging technology shifts the reliance
from detectors to post-processing, potentially achieving the per-
formance of higher-end detectors at reduced costs and even sur-
passing them, which holds significant implications for both
scientific research and practical applications.
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5. Summary

Computational optical imaging promotes the organic combina-
tion of traditional optical imaging and information processing,
driven by imaging information transmission and guided by
imaging purposes, coordinates the integrated design of the
whole imaging link, carries out dimensional upgrading process-
ing of light field information, enhances the utilization rate and
interpretation of light field information, achieves revolutionary
advantages that are difficult to obtain by traditional optical im-
aging technology, realizes the improvement of resolution, the
expansion of imaging distance, and the increase of imaging
FOV from different dimensions, and is expected to realize dis-
ruptive imaging applications such as optical cloud penetration,
depth imaging of living biological tissues, and NLOS imaging.
In addition, the development of computational imaging technol-
ogy is an effective way to break through the limitations of tradi-
tional photoelectric imaging, and it is also an inevitable choice
for the future development of photoelectric imaging technology.
At the same time, the acquisition and utilization of light field
information of different dimensions in the imaging process
are analyzed from the whole link of the computational light
source, computational medium, computational optical system,
computational detector, and computational processing, and a
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complete research system is systematically sorted out for the
development of computational imaging technology and the
influencing factors.

Despite the rapid development of computational imaging
technology, there are still the following four problems that need
to be solved urgently: 1. The basic theory of computational im-
aging is insufficient. Most of the computational imaging tech-
nologies are still based on the traditional photoelectric imaging
theory, and the nonlinear complex field and multidimensional
physical quantity detection theory for computational imaging
has not yet been formed, resulting in a lack of theoretical guid-
ance for the development of technology. 2. The development
direction is not clear, and there is a lack of systematic explora-
tion of the common basic problems and key technologies of
computational imaging technology. 3. The research is frag-
mented; the technical research is fragmented, independent, and
lacks contact with each other. The understanding of computa-
tional imaging is limited to a narrow field, and the development
is easy to be limited to a partial. 4. It is difficult to implement
technology applications, and there is a lack of a general leader
who can systematically and clearly guide theory to technology
to application. Additionally, the connection between technology
supply and application demand is not smooth. In the future,
while aiming at the above four problems, combined with the
rapid development of freeform surface, deep learning, and other
technologies, computational imaging technology can become a
truly future-oriented imaging technology.
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